Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Diferencia.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
La derivada de con respecto a es .
Paso 3
Paso 3.1
Diferencia.
Paso 3.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
La derivada de con respecto a es .
Paso 3.2.3
Multiplica por .
Paso 3.2.4
Multiplica por .
Paso 3.3
Suma y .
Paso 4
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 5
Resta de ambos lados de la ecuación.
Paso 6
Paso 6.1
Divide cada término en por .
Paso 6.2
Simplifica el lado izquierdo.
Paso 6.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 6.2.2
Divide por .
Paso 6.3
Simplifica el lado derecho.
Paso 6.3.1
Divide por .
Paso 7
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 8
Paso 8.1
El valor exacto de es .
Paso 9
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 10
Resta de .
Paso 11
La solución a la ecuación .
Paso 12
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 13
El valor exacto de es .
Paso 14
Paso 14.1
Divide en intervalos separados alrededor de los valores de que hacen que la primera derivada sea o indefinida.
Paso 14.2
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.2.1
Reemplaza la variable con en la expresión.
Paso 14.2.2
Simplifica el resultado.
Paso 14.2.2.1
Simplifica cada término.
Paso 14.2.2.1.1
Evalúa .
Paso 14.2.2.1.2
Multiplica por .
Paso 14.2.2.2
Suma y .
Paso 14.2.2.3
La respuesta final es .
Paso 14.3
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.3.1
Reemplaza la variable con en la expresión.
Paso 14.3.2
Simplifica el resultado.
Paso 14.3.2.1
Simplifica cada término.
Paso 14.3.2.1.1
Evalúa .
Paso 14.3.2.1.2
Multiplica por .
Paso 14.3.2.2
Suma y .
Paso 14.3.2.3
La respuesta final es .
Paso 14.4
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.4.1
Reemplaza la variable con en la expresión.
Paso 14.4.2
Simplifica el resultado.
Paso 14.4.2.1
Simplifica cada término.
Paso 14.4.2.1.1
Evalúa .
Paso 14.4.2.1.2
Multiplica por .
Paso 14.4.2.2
Suma y .
Paso 14.4.2.3
La respuesta final es .
Paso 14.5
Como la primera derivada no cambió los signos alrededor de , no es un máximo local ni un mínimo local.
No es un máximo local ni un mínimo local
Paso 14.6
No se obtuvieron máximos ni mínimos locales para .
No hay máximos ni mínimos locales
No hay máximos ni mínimos locales
Paso 15