Ingresa un problema...
Cálculo Ejemplos
, , ,
Paso 1
Paso 1.1
Elimina los lados iguales de cada ecuación y combina.
Paso 1.2
Resuelve en .
Paso 1.2.1
Resuelve
Paso 1.2.1.1
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Paso 1.2.1.1.1
Resta de ambos lados de la ecuación.
Paso 1.2.1.1.2
Resta de .
Paso 1.2.1.2
Divide cada término en por y simplifica.
Paso 1.2.1.2.1
Divide cada término en por .
Paso 1.2.1.2.2
Simplifica el lado izquierdo.
Paso 1.2.1.2.2.1
Cancela el factor común de .
Paso 1.2.1.2.2.1.1
Cancela el factor común.
Paso 1.2.1.2.2.1.2
Divide por .
Paso 1.2.1.2.3
Simplifica el lado derecho.
Paso 1.2.1.2.3.1
Divide por .
Paso 1.2.2
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 1.2.3
Simplifica cada lado de la ecuación.
Paso 1.2.3.1
Usa para reescribir como .
Paso 1.2.3.2
Simplifica el lado izquierdo.
Paso 1.2.3.2.1
Simplifica .
Paso 1.2.3.2.1.1
Multiplica los exponentes en .
Paso 1.2.3.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.2.3.2.1.1.2
Cancela el factor común de .
Paso 1.2.3.2.1.1.2.1
Cancela el factor común.
Paso 1.2.3.2.1.1.2.2
Reescribe la expresión.
Paso 1.2.3.2.1.2
Simplifica.
Paso 1.2.3.3
Simplifica el lado derecho.
Paso 1.2.3.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.2.4
Resuelve
Paso 1.2.4.1
Resta de ambos lados de la ecuación.
Paso 1.2.4.2
Divide cada término en por y simplifica.
Paso 1.2.4.2.1
Divide cada término en por .
Paso 1.2.4.2.2
Simplifica el lado izquierdo.
Paso 1.2.4.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.4.2.2.2
Divide por .
Paso 1.2.4.2.3
Simplifica el lado derecho.
Paso 1.2.4.2.3.1
Divide por .
Paso 1.2.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 1.2.4.4
Simplifica .
Paso 1.2.4.4.1
Reescribe como .
Paso 1.2.4.4.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 1.2.4.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 1.2.4.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 1.2.4.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 1.2.4.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 1.3
Evalúa cuando .
Paso 1.3.1
Sustituye por .
Paso 1.3.2
Simplifica .
Paso 1.3.2.1
Eleva a la potencia de .
Paso 1.3.2.2
Multiplica por .
Paso 1.3.2.3
Resta de .
Paso 1.3.2.4
Reescribe como .
Paso 1.3.2.5
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 1.4
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 2
Paso 2.1
Reescribe como .
Paso 2.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 3
Paso 3.1
Reescribe como .
Paso 3.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 4
El área de la región entre las curvas se define como la integral de la curva superior menos la integral de la curva inferior en cada región. Las regiones están determinadas por los puntos de intersección de las curvas. Esto puede hacerse mediante un cálculo algebraico o una representación gráfica.
Paso 5
Paso 5.1
Combina las integrales en una sola integral.
Paso 5.2
Multiplica .
Paso 5.2.1
Multiplica por .
Paso 5.2.2
Multiplica por .
Paso 5.3
Suma y .
Paso 5.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.5
Completa el cuadrado.
Paso 5.5.1
Simplifica la expresión.
Paso 5.5.1.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 5.5.1.1.1
Aplica la propiedad distributiva.
Paso 5.5.1.1.2
Aplica la propiedad distributiva.
Paso 5.5.1.1.3
Aplica la propiedad distributiva.
Paso 5.5.1.2
Simplifica y combina los términos similares.
Paso 5.5.1.2.1
Simplifica cada término.
Paso 5.5.1.2.1.1
Multiplica por .
Paso 5.5.1.2.1.2
Multiplica por .
Paso 5.5.1.2.1.3
Mueve a la izquierda de .
Paso 5.5.1.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 5.5.1.2.1.5
Multiplica por sumando los exponentes.
Paso 5.5.1.2.1.5.1
Mueve .
Paso 5.5.1.2.1.5.2
Multiplica por .
Paso 5.5.1.2.2
Suma y .
Paso 5.5.1.2.3
Suma y .
Paso 5.5.1.3
Reordena y .
Paso 5.5.2
Usa la forma , para obtener los valores de , y .
Paso 5.5.3
Considera la forma de vértice de una parábola.
Paso 5.5.4
Obtén el valor de con la fórmula .
Paso 5.5.4.1
Sustituye los valores de y en la fórmula .
Paso 5.5.4.2
Simplifica el lado derecho.
Paso 5.5.4.2.1
Cancela el factor común de y .
Paso 5.5.4.2.1.1
Factoriza de .
Paso 5.5.4.2.1.2
Mueve el negativo del denominador de .
Paso 5.5.4.2.2
Reescribe como .
Paso 5.5.4.2.3
Multiplica por .
Paso 5.5.5
Obtén el valor de con la fórmula .
Paso 5.5.5.1
Sustituye los valores de , y en la fórmula .
Paso 5.5.5.2
Simplifica el lado derecho.
Paso 5.5.5.2.1
Simplifica cada término.
Paso 5.5.5.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 5.5.5.2.1.2
Multiplica por .
Paso 5.5.5.2.1.3
Divide por .
Paso 5.5.5.2.1.4
Multiplica por .
Paso 5.5.5.2.2
Suma y .
Paso 5.5.6
Sustituye los valores de , y en la forma de vértice .
Paso 5.6
Sea . Entonces . Reescribe mediante y .
Paso 5.6.1
Deja . Obtén .
Paso 5.6.1.1
Diferencia .
Paso 5.6.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.6.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.6.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.6.1.5
Suma y .
Paso 5.6.2
Sustituye el límite inferior por en .
Paso 5.6.3
Suma y .
Paso 5.6.4
Sustituye el límite superior por en .
Paso 5.6.5
Suma y .
Paso 5.6.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 5.6.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 5.7
Sea , donde . Entonces . Tenga en cuenta que ya que , es positiva.
Paso 5.8
Simplifica los términos.
Paso 5.8.1
Simplifica .
Paso 5.8.1.1
Simplifica cada término.
Paso 5.8.1.1.1
Aplica la regla del producto a .
Paso 5.8.1.1.2
Eleva a la potencia de .
Paso 5.8.1.1.3
Multiplica por .
Paso 5.8.1.2
Reordena y .
Paso 5.8.1.3
Factoriza de .
Paso 5.8.1.4
Factoriza de .
Paso 5.8.1.5
Factoriza de .
Paso 5.8.1.6
Aplica la identidad pitagórica.
Paso 5.8.1.7
Reescribe como .
Paso 5.8.1.8
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.8.2
Simplifica.
Paso 5.8.2.1
Multiplica por .
Paso 5.8.2.2
Eleva a la potencia de .
Paso 5.8.2.3
Eleva a la potencia de .
Paso 5.8.2.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.8.2.5
Suma y .
Paso 5.9
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.10
Multiplica por .
Paso 5.11
Usa la fórmula del ángulo mitad para reescribir como .
Paso 5.12
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.13
Simplifica.
Paso 5.13.1
Combina y .
Paso 5.13.2
Cancela el factor común de y .
Paso 5.13.2.1
Factoriza de .
Paso 5.13.2.2
Cancela los factores comunes.
Paso 5.13.2.2.1
Factoriza de .
Paso 5.13.2.2.2
Cancela el factor común.
Paso 5.13.2.2.3
Reescribe la expresión.
Paso 5.13.2.2.4
Divide por .
Paso 5.14
Divide la única integral en varias integrales.
Paso 5.15
Aplica la regla de la constante.
Paso 5.16
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 5.16.1
Deja . Obtén .
Paso 5.16.1.1
Diferencia .
Paso 5.16.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.16.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.16.1.4
Multiplica por .
Paso 5.16.2
Sustituye el límite inferior por en .
Paso 5.16.3
Cancela el factor común de .
Paso 5.16.3.1
Mueve el signo menos inicial en al numerador.
Paso 5.16.3.2
Cancela el factor común.
Paso 5.16.3.3
Reescribe la expresión.
Paso 5.16.4
Sustituye el límite superior por en .
Paso 5.16.5
Cancela el factor común de .
Paso 5.16.5.1
Cancela el factor común.
Paso 5.16.5.2
Reescribe la expresión.
Paso 5.16.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 5.16.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 5.17
Combina y .
Paso 5.18
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.19
La integral de con respecto a es .
Paso 5.20
Combina y .
Paso 5.21
Sustituye y simplifica.
Paso 5.21.1
Evalúa en y en .
Paso 5.21.2
Evalúa en y en .
Paso 5.21.3
Simplifica.
Paso 5.21.3.1
Combina los numeradores sobre el denominador común.
Paso 5.21.3.2
Suma y .
Paso 5.21.3.3
Cancela el factor común de .
Paso 5.21.3.3.1
Cancela el factor común.
Paso 5.21.3.3.2
Divide por .
Paso 5.22
Simplifica.
Paso 5.22.1
Simplifica el numerador.
Paso 5.22.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 5.22.1.2
El valor exacto de es .
Paso 5.22.1.3
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante.
Paso 5.22.1.4
El valor exacto de es .
Paso 5.22.1.5
Multiplica por .
Paso 5.22.1.6
Suma y .
Paso 5.22.2
Divide por .
Paso 5.23
Suma y .
Paso 6