Cálculo Ejemplos

أوجد الخطيّة عندما x=0 f(x) = square root of x+1+sin(x) , x=0
,
Paso 1
Considera la función utilizada para buscar la linealización en .
Paso 2
Sustituye el valor de en la función de linealización.
Paso 3
Evalúa .
Toca para ver más pasos...
Paso 3.1
Reemplaza la variable con en la expresión.
Paso 3.2
Simplifica .
Toca para ver más pasos...
Paso 3.2.1
Elimina los paréntesis.
Paso 3.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1
Suma y .
Paso 3.2.2.2
Cualquier raíz de es .
Paso 3.2.2.3
El valor exacto de es .
Paso 3.2.3
Suma y .
Paso 4
Obtén la derivada y evalúala en .
Toca para ver más pasos...
Paso 4.1
Obtén la derivada de .
Toca para ver más pasos...
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Toca para ver más pasos...
Paso 4.1.2.1
Usa para reescribir como .
Paso 4.1.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 4.1.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.2.3
Reemplaza todos los casos de con .
Paso 4.1.2.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.2.7
Combina y .
Paso 4.1.2.8
Combina los numeradores sobre el denominador común.
Paso 4.1.2.9
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.1.2.9.1
Multiplica por .
Paso 4.1.2.9.2
Resta de .
Paso 4.1.2.10
Mueve el negativo al frente de la fracción.
Paso 4.1.2.11
Suma y .
Paso 4.1.2.12
Combina y .
Paso 4.1.2.13
Multiplica por .
Paso 4.1.2.14
Mueve al denominador mediante la regla del exponente negativo .
Paso 4.1.3
La derivada de con respecto a es .
Paso 4.2
Reemplaza la variable con en la expresión.
Paso 4.3
Simplifica.
Toca para ver más pasos...
Paso 4.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.3.1.1
Simplifica el denominador.
Toca para ver más pasos...
Paso 4.3.1.1.1
Suma y .
Paso 4.3.1.1.2
Uno elevado a cualquier potencia es uno.
Paso 4.3.1.2
Multiplica por .
Paso 4.3.1.3
El valor exacto de es .
Paso 4.3.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.3.2.1
Escribe como una fracción con un denominador común.
Paso 4.3.2.2
Combina los numeradores sobre el denominador común.
Paso 4.3.2.3
Suma y .
Paso 5
Sustituye los componentes en la función de linealización para obtener la linealización en .
Paso 6
Simplifica cada término.
Toca para ver más pasos...
Paso 6.1
Resta de .
Paso 6.2
Combina y .
Paso 7