Cálculo Ejemplos

Hallar la recta tangente horizontal y=-8x+e^x
Paso 1
Establece como una función de .
Paso 2
Obtén la derivada.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3
Establece la derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Suma a ambos lados de la ecuación.
Paso 3.2
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.3
Expande el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 3.3.2
El logaritmo natural de es .
Paso 3.3.3
Multiplica por .
Paso 4
Resuelve la función original en .
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Simplifica al mover dentro del algoritmo.
Paso 4.2.1.2
Eleva a la potencia de .
Paso 4.2.1.3
Potencia y logaritmo son funciones inversas.
Paso 4.2.2
La respuesta final es .
Paso 5
La tangente horizontal en la función es .
Paso 6