Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Sea , donde . Entonces . Tenga en cuenta que ya que , es positiva.
Paso 5
Paso 5.1
Simplifica .
Paso 5.1.1
Simplifica cada término.
Paso 5.1.1.1
Aplica la regla del producto a .
Paso 5.1.1.2
Eleva a la potencia de .
Paso 5.1.1.3
Multiplica por .
Paso 5.1.2
Factoriza de .
Paso 5.1.3
Factoriza de .
Paso 5.1.4
Factoriza de .
Paso 5.1.5
Aplica la identidad pitagórica.
Paso 5.1.6
Reescribe como .
Paso 5.1.7
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.2
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 5.2.1
Cancela el factor común de .
Paso 5.2.1.1
Cancela el factor común.
Paso 5.2.1.2
Reescribe la expresión.
Paso 5.2.2
Simplifica.
Paso 5.2.2.1
Factoriza de .
Paso 5.2.2.2
Aplica la regla del producto a .
Paso 5.2.2.3
Eleva a la potencia de .
Paso 6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 7
Usa la fórmula del ángulo mitad para reescribir como .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Paso 9.1
Combina y .
Paso 9.2
Cancela el factor común de y .
Paso 9.2.1
Factoriza de .
Paso 9.2.2
Cancela los factores comunes.
Paso 9.2.2.1
Factoriza de .
Paso 9.2.2.2
Cancela el factor común.
Paso 9.2.2.3
Reescribe la expresión.
Paso 9.2.2.4
Divide por .
Paso 10
Divide la única integral en varias integrales.
Paso 11
Aplica la regla de la constante.
Paso 12
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13
Paso 13.1
Deja . Obtén .
Paso 13.1.1
Diferencia .
Paso 13.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 13.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 13.1.4
Multiplica por .
Paso 13.2
Reescribe el problema mediante y .
Paso 14
Combina y .
Paso 15
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 16
La integral de con respecto a es .
Paso 17
Simplifica.
Paso 18
Paso 18.1
Reemplaza todos los casos de con .
Paso 18.2
Reemplaza todos los casos de con .
Paso 18.3
Reemplaza todos los casos de con .
Paso 19
Paso 19.1
Combina y .
Paso 19.2
Aplica la propiedad distributiva.
Paso 19.3
Cancela el factor común de .
Paso 19.3.1
Mueve el signo menos inicial en al numerador.
Paso 19.3.2
Factoriza de .
Paso 19.3.3
Cancela el factor común.
Paso 19.3.4
Reescribe la expresión.
Paso 19.4
Multiplica por .
Paso 20
Reordena los términos.
Paso 21
La respuesta es la antiderivada de la función .