Cálculo Ejemplos

Halle la antiderivada sin(x)^3cos(x)^2
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Factoriza .
Paso 5
Mediante la identidad pitagórica, reescribe como .
Paso 6
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 6.1
Deja . Obtén .
Toca para ver más pasos...
Paso 6.1.1
Diferencia .
Paso 6.1.2
La derivada de con respecto a es .
Paso 6.2
Reescribe el problema mediante y .
Paso 7
Multiplica .
Paso 8
Simplifica.
Toca para ver más pasos...
Paso 8.1
Reescribe como .
Paso 8.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 8.2.1
Usa la regla de la potencia para combinar exponentes.
Paso 8.2.2
Suma y .
Paso 9
Divide la única integral en varias integrales.
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Según la regla de la potencia, la integral de con respecto a es .
Paso 12
Según la regla de la potencia, la integral de con respecto a es .
Paso 13
Simplifica.
Toca para ver más pasos...
Paso 13.1
Combina y .
Paso 13.2
Simplifica.
Paso 14
Reemplaza todos los casos de con .
Paso 15
La respuesta es la antiderivada de la función .