Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.3
Diferencia.
Paso 1.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.3.4
Simplifica la expresión.
Paso 1.1.3.4.1
Suma y .
Paso 1.1.3.4.2
Multiplica por .
Paso 1.1.4
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.1.5
Diferencia.
Paso 1.1.5.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.5.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.5.4
Multiplica por .
Paso 1.1.5.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.5.6
Simplifica la expresión.
Paso 1.1.5.6.1
Suma y .
Paso 1.1.5.6.2
Mueve a la izquierda de .
Paso 1.1.5.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.5.8
Simplifica mediante la adición de términos.
Paso 1.1.5.8.1
Multiplica por .
Paso 1.1.5.8.2
Suma y .
Paso 1.1.6
Simplifica.
Paso 1.1.6.1
Aplica la propiedad distributiva.
Paso 1.1.6.2
Aplica la propiedad distributiva.
Paso 1.1.6.3
Aplica la propiedad distributiva.
Paso 1.1.6.4
Aplica la propiedad distributiva.
Paso 1.1.6.5
Aplica la propiedad distributiva.
Paso 1.1.6.6
Aplica la propiedad distributiva.
Paso 1.1.6.7
Combina los términos.
Paso 1.1.6.7.1
Eleva a la potencia de .
Paso 1.1.6.7.2
Eleva a la potencia de .
Paso 1.1.6.7.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.6.7.4
Suma y .
Paso 1.1.6.7.5
Multiplica por .
Paso 1.1.6.7.6
Mueve a la izquierda de .
Paso 1.1.6.7.7
Multiplica por .
Paso 1.1.6.7.8
Eleva a la potencia de .
Paso 1.1.6.7.9
Eleva a la potencia de .
Paso 1.1.6.7.10
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.6.7.11
Suma y .
Paso 1.1.6.7.12
Multiplica por .
Paso 1.1.6.7.13
Multiplica por .
Paso 1.1.6.7.14
Multiplica por .
Paso 1.1.6.7.15
Mueve a la izquierda de .
Paso 1.1.6.7.16
Multiplica por .
Paso 1.1.6.7.17
Multiplica por .
Paso 1.1.6.7.18
Multiplica por .
Paso 1.1.6.7.19
Suma y .
Paso 1.1.6.7.20
Suma y .
Paso 1.1.6.7.21
Resta de .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza de .
Paso 2.2.1
Factoriza de .
Paso 2.2.2
Factoriza de .
Paso 2.2.3
Factoriza de .
Paso 2.2.4
Factoriza de .
Paso 2.2.5
Factoriza de .
Paso 2.3
Divide cada término en por y simplifica.
Paso 2.3.1
Divide cada término en por .
Paso 2.3.2
Simplifica el lado izquierdo.
Paso 2.3.2.1
Cancela el factor común de .
Paso 2.3.2.1.1
Cancela el factor común.
Paso 2.3.2.1.2
Divide por .
Paso 2.3.3
Simplifica el lado derecho.
Paso 2.3.3.1
Divide por .
Paso 2.4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 2.5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 2.6
Simplifica.
Paso 2.6.1
Simplifica el numerador.
Paso 2.6.1.1
Eleva a la potencia de .
Paso 2.6.1.2
Multiplica .
Paso 2.6.1.2.1
Multiplica por .
Paso 2.6.1.2.2
Multiplica por .
Paso 2.6.1.3
Suma y .
Paso 2.6.1.4
Reescribe como .
Paso 2.6.1.4.1
Factoriza de .
Paso 2.6.1.4.2
Reescribe como .
Paso 2.6.1.5
Retira los términos de abajo del radical.
Paso 2.6.2
Multiplica por .
Paso 2.6.3
Simplifica .
Paso 2.7
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.7.1
Simplifica el numerador.
Paso 2.7.1.1
Eleva a la potencia de .
Paso 2.7.1.2
Multiplica .
Paso 2.7.1.2.1
Multiplica por .
Paso 2.7.1.2.2
Multiplica por .
Paso 2.7.1.3
Suma y .
Paso 2.7.1.4
Reescribe como .
Paso 2.7.1.4.1
Factoriza de .
Paso 2.7.1.4.2
Reescribe como .
Paso 2.7.1.5
Retira los términos de abajo del radical.
Paso 2.7.2
Multiplica por .
Paso 2.7.3
Simplifica .
Paso 2.7.4
Cambia a .
Paso 2.8
Simplifica la expresión para obtener el valor de la parte de .
Paso 2.8.1
Simplifica el numerador.
Paso 2.8.1.1
Eleva a la potencia de .
Paso 2.8.1.2
Multiplica .
Paso 2.8.1.2.1
Multiplica por .
Paso 2.8.1.2.2
Multiplica por .
Paso 2.8.1.3
Suma y .
Paso 2.8.1.4
Reescribe como .
Paso 2.8.1.4.1
Factoriza de .
Paso 2.8.1.4.2
Reescribe como .
Paso 2.8.1.5
Retira los términos de abajo del radical.
Paso 2.8.2
Multiplica por .
Paso 2.8.3
Simplifica .
Paso 2.8.4
Cambia a .
Paso 2.9
La respuesta final es la combinación de ambas soluciones.
Paso 3
Los valores que hacen que la derivada sea igual a son .
Paso 4
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 5
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Paso 5.2.1
Simplifica cada término.
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.1.3
Multiplica por .
Paso 5.2.2
Simplifica mediante suma y resta.
Paso 5.2.2.1
Suma y .
Paso 5.2.2.2
Resta de .
Paso 5.2.3
La respuesta final es .
Paso 5.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Multiplica por .
Paso 6.2.2
Simplifica mediante la resta de números.
Paso 6.2.2.1
Resta de .
Paso 6.2.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Multiplica por .
Paso 7.2.1.3
Multiplica por .
Paso 7.2.2
Simplifica mediante la resta de números.
Paso 7.2.2.1
Resta de .
Paso 7.2.2.2
Resta de .
Paso 7.2.3
La respuesta final es .
Paso 7.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 8
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 9