Cálculo Ejemplos

Evaluar utilizando la regla de L'Hôpital límite a medida que x se aproxima a infinity de (4x)/( logaritmo natural de x^2+1)
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.3
A medida que el logaritmo se acerca al infinito, el valor va a .
Paso 1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Multiplica por .
Paso 3.5
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.5.1
Para aplicar la regla de la cadena, establece como .
Paso 3.5.2
La derivada de con respecto a es .
Paso 3.5.3
Reemplaza todos los casos de con .
Paso 3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.9
Suma y .
Paso 3.10
Combina y .
Paso 3.11
Combina y .
Paso 4
Multiplica el numerador por la recíproca del denominador.
Paso 5
Simplifica los términos.
Toca para ver más pasos...
Paso 5.1
Combina y .
Paso 5.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.2.2.1
Factoriza de .
Paso 5.2.2.2
Cancela el factor común.
Paso 5.2.2.3
Reescribe la expresión.
Paso 6
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 6.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 6.1.1
Resta el límite del numerador y el límite del denominador.
Paso 6.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 6.1.2.1
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 6.1.2.1.1
Aplica la propiedad distributiva.
Paso 6.1.2.1.2
Multiplica por .
Paso 6.1.2.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 6.1.3
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 6.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 6.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 6.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 6.3.1
Diferencia el numerador y el denominador.
Paso 6.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 6.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.3.6
Suma y .
Paso 6.3.7
Multiplica por .
Paso 6.3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.4
Divide por .
Paso 7
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.