Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.3
A medida que el logaritmo se acerca al infinito, el valor va a .
Paso 1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Multiplica por .
Paso 3.5
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.5.1
Para aplicar la regla de la cadena, establece como .
Paso 3.5.2
La derivada de con respecto a es .
Paso 3.5.3
Reemplaza todos los casos de con .
Paso 3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.9
Suma y .
Paso 3.10
Combina y .
Paso 3.11
Combina y .
Paso 4
Multiplica el numerador por la recíproca del denominador.
Paso 5
Paso 5.1
Combina y .
Paso 5.2
Cancela el factor común de y .
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Cancela los factores comunes.
Paso 5.2.2.1
Factoriza de .
Paso 5.2.2.2
Cancela el factor común.
Paso 5.2.2.3
Reescribe la expresión.
Paso 6
Paso 6.1
Evalúa el límite del numerador y el límite del denominador.
Paso 6.1.1
Resta el límite del numerador y el límite del denominador.
Paso 6.1.2
Evalúa el límite del numerador.
Paso 6.1.2.1
Simplifica mediante la multiplicación.
Paso 6.1.2.1.1
Aplica la propiedad distributiva.
Paso 6.1.2.1.2
Multiplica por .
Paso 6.1.2.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 6.1.3
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 6.1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 6.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 6.3
Obtén la derivada del numerador y el denominador.
Paso 6.3.1
Diferencia el numerador y el denominador.
Paso 6.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 6.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.3.6
Suma y .
Paso 6.3.7
Multiplica por .
Paso 6.3.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.4
Divide por .
Paso 7
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.