Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.2.3
Reemplaza todos los casos de con .
Paso 1.1.2.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.7
Multiplica por .
Paso 1.1.2.8
Suma y .
Paso 1.1.2.9
Multiplica por .
Paso 1.1.2.10
Multiplica por .
Paso 1.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.4
Simplifica.
Paso 1.1.4.1
Aplica la propiedad distributiva.
Paso 1.1.4.2
Aplica la propiedad distributiva.
Paso 1.1.4.3
Combina los términos.
Paso 1.1.4.3.1
Multiplica por .
Paso 1.1.4.3.2
Eleva a la potencia de .
Paso 1.1.4.3.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.4.3.4
Suma y .
Paso 1.1.4.3.5
Multiplica por .
Paso 1.1.4.3.6
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Paso 2.2.1
Factoriza de .
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Factoriza.
Paso 2.2.3.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.2.3.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a .
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
Establece igual a y resuelve .
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 3
Paso 3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Simplifica cada término.
Paso 4.1.2.1.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.1.2
Multiplica por .
Paso 4.1.2.1.2
Suma y .
Paso 4.1.2.1.3
Eleva a la potencia de .
Paso 4.1.2.1.4
Multiplica por .
Paso 4.1.2.2
Suma y .
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
Simplifica.
Paso 4.2.2.1
Simplifica cada término.
Paso 4.2.2.1.1
Simplifica cada término.
Paso 4.2.2.1.1.1
Eleva a la potencia de .
Paso 4.2.2.1.1.2
Multiplica por .
Paso 4.2.2.1.2
Suma y .
Paso 4.2.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.2.2.1.4
Multiplica por .
Paso 4.2.2.2
Suma y .
Paso 4.3
Evalúa en .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Simplifica cada término.
Paso 4.3.2.1.1.1
Eleva a la potencia de .
Paso 4.3.2.1.1.2
Multiplica por .
Paso 4.3.2.1.2
Suma y .
Paso 4.3.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.3.2.1.4
Multiplica por .
Paso 4.3.2.2
Suma y .
Paso 4.4
Enumera todos los puntos.
Paso 5