Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 1.1.2
La derivada de con respecto a es .
Paso 1.1.3
Diferencia con la regla de la potencia.
Paso 1.1.3.1
Combina y .
Paso 1.1.3.2
Cancela el factor común de .
Paso 1.1.3.2.1
Cancela el factor común.
Paso 1.1.3.2.2
Reescribe la expresión.
Paso 1.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.3.4
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Resuelve la ecuación en .
Paso 2.3.1
Resta de ambos lados de la ecuación.
Paso 2.3.2
Divide cada término en por y simplifica.
Paso 2.3.2.1
Divide cada término en por .
Paso 2.3.2.2
Simplifica el lado izquierdo.
Paso 2.3.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.3.2.2.2
Divide por .
Paso 2.3.2.3
Simplifica el lado derecho.
Paso 2.3.2.3.1
Divide por .
Paso 2.3.3
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 2.3.4
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 2.3.5
Reescribe la ecuación como .
Paso 3
Paso 3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.2
Resuelve
Paso 3.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.2.2
Simplifica .
Paso 3.2.2.1
Reescribe como .
Paso 3.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.2.2.3
Más o menos es .
Paso 3.3
Establece el argumento en menor o igual que para obtener el lugar donde no está definida la expresión.
Paso 3.4
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
El logaritmo natural de es .
Paso 4.2
Evalúa en .
Paso 4.2.1
Sustituye por .
Paso 4.2.2
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Indefinida
Paso 4.3
Enumera todos los puntos.
Paso 5