Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2
La derivada de con respecto a es .
Paso 1.1.3
Reemplaza todos los casos de con .
Paso 1.2
Diferencia.
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Simplifica la expresión.
Paso 1.2.2.1
Aplica la regla del producto a .
Paso 1.2.2.2
Eleva a la potencia de .
Paso 1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.4
Combina y .
Paso 1.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.6
Simplifica la expresión.
Paso 1.2.6.1
Multiplica por .
Paso 1.2.6.2
Reordena los términos.
Paso 2
Paso 2.1
Diferencia con la regla del múltiplo constante.
Paso 2.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2
Reescribe como .
Paso 2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Diferencia.
Paso 2.3.1
Multiplica por .
Paso 2.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.5
Multiplica por .
Paso 2.3.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.7
Simplifica la expresión.
Paso 2.3.7.1
Suma y .
Paso 2.3.7.2
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.4.2
Combina los términos.
Paso 2.4.2.1
Combina y .
Paso 2.4.2.2
Mueve el negativo al frente de la fracción.
Paso 2.4.2.3
Combina y .
Paso 2.4.2.4
Mueve a la izquierda de .
Paso 3
La segunda derivada de con respecto a es .