Cálculo Ejemplos

أوجد المشتق Second y=sec(2x)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2
La derivada de con respecto a es .
Paso 1.1.3
Reemplaza todos los casos de con .
Paso 1.2
Diferencia.
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.2.3.1
Multiplica por .
Paso 1.2.3.2
Mueve a la izquierda de .
Paso 2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.2
La derivada de con respecto a es .
Paso 2.3.3
Reemplaza todos los casos de con .
Paso 2.4
Eleva a la potencia de .
Paso 2.5
Usa la regla de la potencia para combinar exponentes.
Paso 2.6
Diferencia.
Toca para ver más pasos...
Paso 2.6.1
Suma y .
Paso 2.6.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.6.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.6.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.6.4.1
Multiplica por .
Paso 2.6.4.2
Mueve a la izquierda de .
Paso 2.7
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.7.1
Para aplicar la regla de la cadena, establece como .
Paso 2.7.2
La derivada de con respecto a es .
Paso 2.7.3
Reemplaza todos los casos de con .
Paso 2.8
Eleva a la potencia de .
Paso 2.9
Eleva a la potencia de .
Paso 2.10
Usa la regla de la potencia para combinar exponentes.
Paso 2.11
Suma y .
Paso 2.12
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.13
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.14
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.14.1
Multiplica por .
Paso 2.14.2
Mueve a la izquierda de .
Paso 2.15
Simplifica.
Toca para ver más pasos...
Paso 2.15.1
Aplica la propiedad distributiva.
Paso 2.15.2
Combina los términos.
Toca para ver más pasos...
Paso 2.15.2.1
Multiplica por .
Paso 2.15.2.2
Multiplica por .
Paso 2.15.3
Reordena los términos.