Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtener la segunda derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Multiplica por .
Paso 1.1.1.3
Evalúa .
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.1.3.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.1.3.2.3
Reemplaza todos los casos de con .
Paso 1.1.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.5
Multiplica por .
Paso 1.1.1.3.6
Mueve a la izquierda de .
Paso 1.1.1.3.7
Reescribe como .
Paso 1.1.1.3.8
Multiplica por .
Paso 1.1.1.4
Reordena los términos.
Paso 1.1.2
Obtener la segunda derivada.
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Evalúa .
Paso 1.1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.2.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.1.2.2.2.3
Reemplaza todos los casos de con .
Paso 1.1.2.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.2.5
Multiplica por .
Paso 1.1.2.2.6
Mueve a la izquierda de .
Paso 1.1.2.2.7
Reescribe como .
Paso 1.1.2.2.8
Multiplica por .
Paso 1.1.2.3
Diferencia con la regla de la constante.
Paso 1.1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.3.2
Suma y .
Paso 1.1.3
La segunda derivada de con respecto a es .
Paso 1.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Paso 1.2.1
Establece la segunda derivada igual a .
Paso 1.2.2
Divide cada término en por y simplifica.
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.2.1
Cancela el factor común de .
Paso 1.2.2.2.1.1
Cancela el factor común.
Paso 1.2.2.2.1.2
Divide por .
Paso 1.2.2.3
Simplifica el lado derecho.
Paso 1.2.2.3.1
Divide por .
Paso 1.2.3
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 1.2.4
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 1.2.5
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
La gráfica es cóncava porque la segunda derivada es negativa.
La gráfica es cóncava.
Paso 4