Cálculo Ejemplos

أوجد المشتق باستخدام قاعدة الباقي- d/dt d/(dt)((t^2+1)/(t^2-1))
Paso 1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2
Diferencia.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Suma y .
Paso 2.5
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.8
Suma y .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Aplica la propiedad distributiva.
Paso 3.2
Aplica la propiedad distributiva.
Paso 3.3
Aplica la propiedad distributiva.
Paso 3.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.4.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.4.1.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.4.1.2.1
Mueve .
Paso 3.4.1.2.2
Multiplica por .
Toca para ver más pasos...
Paso 3.4.1.2.2.1
Eleva a la potencia de .
Paso 3.4.1.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.1.2.3
Suma y .
Paso 3.4.1.3
Multiplica por .
Paso 3.4.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.4.1.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.4.1.5.1
Mueve .
Paso 3.4.1.5.2
Multiplica por .
Toca para ver más pasos...
Paso 3.4.1.5.2.1
Eleva a la potencia de .
Paso 3.4.1.5.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.1.5.3
Suma y .
Paso 3.4.1.6
Multiplica por .
Paso 3.4.1.7
Multiplica por .
Paso 3.4.1.8
Multiplica por .
Paso 3.4.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 3.4.2.1
Resta de .
Paso 3.4.2.2
Suma y .
Paso 3.4.3
Resta de .
Paso 3.5
Mueve el negativo al frente de la fracción.
Paso 3.6
Simplifica el denominador.
Toca para ver más pasos...
Paso 3.6.1
Reescribe como .
Paso 3.6.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 3.6.3
Aplica la regla del producto a .