Cálculo Ejemplos

Hallar la concavidad 64x^2+54/x+2
Paso 1
Escribe como una función.
Paso 2
Find the values where the second derivative is equal to .
Toca para ver más pasos...
Paso 2.1
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 2.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.2.3
Multiplica por .
Paso 2.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 2.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.3.2
Reescribe como .
Paso 2.1.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.1.3.4
Multiplica por .
Paso 2.1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.1.5
Simplifica.
Toca para ver más pasos...
Paso 2.1.1.5.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.1.1.5.2
Combina los términos.
Toca para ver más pasos...
Paso 2.1.1.5.2.1
Combina y .
Paso 2.1.1.5.2.2
Mueve el negativo al frente de la fracción.
Paso 2.1.1.5.2.3
Suma y .
Paso 2.1.2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2.2
Evalúa .
Toca para ver más pasos...
Paso 2.1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.2.3
Multiplica por .
Paso 2.1.2.3
Evalúa .
Toca para ver más pasos...
Paso 2.1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.3.2
Reescribe como .
Paso 2.1.2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.1.2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.1.2.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3.3.3
Reemplaza todos los casos de con .
Paso 2.1.2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3.5
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.1.2.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.2.3.5.2
Multiplica por .
Paso 2.1.2.3.6
Multiplica por .
Paso 2.1.2.3.7
Eleva a la potencia de .
Paso 2.1.2.3.8
Usa la regla de la potencia para combinar exponentes.
Paso 2.1.2.3.9
Resta de .
Paso 2.1.2.3.10
Multiplica por .
Paso 2.1.2.4
Simplifica.
Toca para ver más pasos...
Paso 2.1.2.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.1.2.4.2
Combina y .
Paso 2.1.2.4.3
Reordena los términos.
Paso 2.1.3
La segunda derivada de con respecto a es .
Paso 2.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.2.1
Establece la segunda derivada igual a .
Paso 2.2.2
Resta de ambos lados de la ecuación.
Paso 2.2.3
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.2.3.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2.3.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 2.2.4
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 2.2.4.1
Multiplica cada término en por .
Paso 2.2.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.4.2.1.1
Cancela el factor común.
Paso 2.2.4.2.1.2
Reescribe la expresión.
Paso 2.2.5
Resuelve la ecuación.
Toca para ver más pasos...
Paso 2.2.5.1
Reescribe la ecuación como .
Paso 2.2.5.2
Resta de ambos lados de la ecuación.
Paso 2.2.5.3
Factoriza de .
Toca para ver más pasos...
Paso 2.2.5.3.1
Factoriza de .
Paso 2.2.5.3.2
Factoriza de .
Paso 2.2.5.3.3
Factoriza de .
Paso 2.2.5.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.5.4.1
Divide cada término en por .
Paso 2.2.5.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.5.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.5.4.2.1.1
Cancela el factor común.
Paso 2.2.5.4.2.1.2
Divide por .
Paso 2.2.5.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.5.4.3.1
Divide por .
Paso 2.2.5.5
Resta de ambos lados de la ecuación.
Paso 2.2.5.6
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.5.6.1
Divide cada término en por .
Paso 2.2.5.6.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.5.6.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.5.6.2.1.1
Cancela el factor común.
Paso 2.2.5.6.2.1.2
Divide por .
Paso 2.2.5.6.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.5.6.3.1
Mueve el negativo al frente de la fracción.
Paso 2.2.5.7
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.2.5.8
Simplifica .
Toca para ver más pasos...
Paso 2.2.5.8.1
Reescribe como .
Toca para ver más pasos...
Paso 2.2.5.8.1.1
Reescribe como .
Paso 2.2.5.8.1.2
Factoriza la potencia perfecta de .
Paso 2.2.5.8.1.3
Factoriza la potencia perfecta de .
Paso 2.2.5.8.1.4
Reorganiza la fracción .
Paso 2.2.5.8.1.5
Reescribe como .
Paso 2.2.5.8.2
Retira los términos de abajo del radical.
Paso 2.2.5.8.3
Reescribe como .
Paso 2.2.5.8.4
Cualquier raíz de es .
Paso 2.2.5.8.5
Multiplica por .
Paso 2.2.5.8.6
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 2.2.5.8.6.1
Multiplica por .
Paso 2.2.5.8.6.2
Eleva a la potencia de .
Paso 2.2.5.8.6.3
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.5.8.6.4
Suma y .
Paso 2.2.5.8.6.5
Reescribe como .
Toca para ver más pasos...
Paso 2.2.5.8.6.5.1
Usa para reescribir como .
Paso 2.2.5.8.6.5.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.5.8.6.5.3
Combina y .
Paso 2.2.5.8.6.5.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.5.8.6.5.4.1
Cancela el factor común.
Paso 2.2.5.8.6.5.4.2
Reescribe la expresión.
Paso 2.2.5.8.6.5.5
Evalúa el exponente.
Paso 2.2.5.8.7
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.2.5.8.7.1
Reescribe como .
Paso 2.2.5.8.7.2
Eleva a la potencia de .
Paso 2.2.5.8.7.3
Reescribe como .
Toca para ver más pasos...
Paso 2.2.5.8.7.3.1
Factoriza de .
Paso 2.2.5.8.7.3.2
Reescribe como .
Paso 2.2.5.8.7.4
Retira los términos de abajo del radical.
Paso 2.2.5.8.8
Simplifica los términos.
Toca para ver más pasos...
Paso 2.2.5.8.8.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.5.8.8.1.1
Mueve el signo menos inicial en al numerador.
Paso 2.2.5.8.8.1.2
Factoriza de .
Paso 2.2.5.8.8.1.3
Cancela el factor común.
Paso 2.2.5.8.8.1.4
Reescribe la expresión.
Paso 2.2.5.8.8.2
Combina y .
Paso 2.2.5.8.8.3
Mueve el negativo al frente de la fracción.
Paso 3
Obtén el dominio de .
Toca para ver más pasos...
Paso 3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.2
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 5
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Divide por .
Paso 5.2.2
Suma y .
Paso 5.2.3
La respuesta final es .
Paso 5.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 6
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Divide por .
Paso 6.2.2
Suma y .
Paso 6.2.3
La respuesta final es .
Paso 6.3
La gráfica es cóncava en el intervalo porque es negativa.
Cóncavo en dado que es negativo
Cóncavo en dado que es negativo
Paso 7
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 7.2.1.1
Eleva a la potencia de .
Paso 7.2.1.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 7.2.1.2.1
Factoriza de .
Paso 7.2.1.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 7.2.1.2.2.1
Factoriza de .
Paso 7.2.1.2.2.2
Cancela el factor común.
Paso 7.2.1.2.2.3
Reescribe la expresión.
Paso 7.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.3
Combina y .
Paso 7.2.4
Combina los numeradores sobre el denominador común.
Paso 7.2.5
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.2.5.1
Multiplica por .
Paso 7.2.5.2
Suma y .
Paso 7.2.6
La respuesta final es .
Paso 7.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 8
La gráfica es cóncava cuando la segunda derivada es negativa y convexa cuando la segunda derivada es positiva.
Convexo en dado que es positivo
Cóncavo en dado que es negativo
Convexo en dado que es positivo
Paso 9