Ingresa un problema...
Cálculo Ejemplos
, ,
Paso 1
Paso 1.1
Elimina los lados iguales de cada ecuación y combina.
Paso 1.2
Resuelve en .
Paso 1.2.1
Obtén el mcd de los términos en la ecuación.
Paso 1.2.1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2.1.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 1.2.2
Multiplica cada término en por para eliminar las fracciones.
Paso 1.2.2.1
Multiplica cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.2.1
Multiplica por sumando los exponentes.
Paso 1.2.2.2.1.1
Mueve .
Paso 1.2.2.2.1.2
Multiplica por .
Paso 1.2.2.2.1.2.1
Eleva a la potencia de .
Paso 1.2.2.2.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.2.2.2.1.3
Suma y .
Paso 1.2.2.3
Simplifica el lado derecho.
Paso 1.2.2.3.1
Cancela el factor común de .
Paso 1.2.2.3.1.1
Cancela el factor común.
Paso 1.2.2.3.1.2
Reescribe la expresión.
Paso 1.2.3
Resuelve la ecuación.
Paso 1.2.3.1
Resta de ambos lados de la ecuación.
Paso 1.2.3.2
Factoriza el lado izquierdo de la ecuación.
Paso 1.2.3.2.1
Factoriza de .
Paso 1.2.3.2.1.1
Factoriza de .
Paso 1.2.3.2.1.2
Factoriza de .
Paso 1.2.3.2.1.3
Factoriza de .
Paso 1.2.3.2.2
Reescribe como .
Paso 1.2.3.2.3
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la diferencia de cubos, , donde y .
Paso 1.2.3.2.4
Factoriza.
Paso 1.2.3.2.4.1
Simplifica.
Paso 1.2.3.2.4.1.1
Multiplica por .
Paso 1.2.3.2.4.1.2
Uno elevado a cualquier potencia es uno.
Paso 1.2.3.2.4.2
Elimina los paréntesis innecesarios.
Paso 1.2.3.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.3.4
Establece igual a y resuelve .
Paso 1.2.3.4.1
Establece igual a .
Paso 1.2.3.4.2
Suma a ambos lados de la ecuación.
Paso 1.2.3.5
Establece igual a y resuelve .
Paso 1.2.3.5.1
Establece igual a .
Paso 1.2.3.5.2
Resuelve en .
Paso 1.2.3.5.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 1.2.3.5.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 1.2.3.5.2.3
Simplifica.
Paso 1.2.3.5.2.3.1
Simplifica el numerador.
Paso 1.2.3.5.2.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.2.3.5.2.3.1.2
Multiplica .
Paso 1.2.3.5.2.3.1.2.1
Multiplica por .
Paso 1.2.3.5.2.3.1.2.2
Multiplica por .
Paso 1.2.3.5.2.3.1.3
Resta de .
Paso 1.2.3.5.2.3.1.4
Reescribe como .
Paso 1.2.3.5.2.3.1.5
Reescribe como .
Paso 1.2.3.5.2.3.1.6
Reescribe como .
Paso 1.2.3.5.2.3.2
Multiplica por .
Paso 1.2.3.5.2.4
Simplifica la expresión para obtener el valor de la parte de .
Paso 1.2.3.5.2.4.1
Simplifica el numerador.
Paso 1.2.3.5.2.4.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.2.3.5.2.4.1.2
Multiplica .
Paso 1.2.3.5.2.4.1.2.1
Multiplica por .
Paso 1.2.3.5.2.4.1.2.2
Multiplica por .
Paso 1.2.3.5.2.4.1.3
Resta de .
Paso 1.2.3.5.2.4.1.4
Reescribe como .
Paso 1.2.3.5.2.4.1.5
Reescribe como .
Paso 1.2.3.5.2.4.1.6
Reescribe como .
Paso 1.2.3.5.2.4.2
Multiplica por .
Paso 1.2.3.5.2.4.3
Cambia a .
Paso 1.2.3.5.2.4.4
Reescribe como .
Paso 1.2.3.5.2.4.5
Factoriza de .
Paso 1.2.3.5.2.4.6
Factoriza de .
Paso 1.2.3.5.2.4.7
Mueve el negativo al frente de la fracción.
Paso 1.2.3.5.2.5
Simplifica la expresión para obtener el valor de la parte de .
Paso 1.2.3.5.2.5.1
Simplifica el numerador.
Paso 1.2.3.5.2.5.1.1
Uno elevado a cualquier potencia es uno.
Paso 1.2.3.5.2.5.1.2
Multiplica .
Paso 1.2.3.5.2.5.1.2.1
Multiplica por .
Paso 1.2.3.5.2.5.1.2.2
Multiplica por .
Paso 1.2.3.5.2.5.1.3
Resta de .
Paso 1.2.3.5.2.5.1.4
Reescribe como .
Paso 1.2.3.5.2.5.1.5
Reescribe como .
Paso 1.2.3.5.2.5.1.6
Reescribe como .
Paso 1.2.3.5.2.5.2
Multiplica por .
Paso 1.2.3.5.2.5.3
Cambia a .
Paso 1.2.3.5.2.5.4
Reescribe como .
Paso 1.2.3.5.2.5.5
Factoriza de .
Paso 1.2.3.5.2.5.6
Factoriza de .
Paso 1.2.3.5.2.5.7
Mueve el negativo al frente de la fracción.
Paso 1.2.3.5.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 1.2.3.6
La solución final comprende todos los valores que hacen verdadera.
Paso 1.3
Evalúa cuando .
Paso 1.3.1
Sustituye por .
Paso 1.3.2
Sustituye por en , y resuelve .
Paso 1.3.2.1
Elimina los paréntesis.
Paso 1.3.2.2
Simplifica .
Paso 1.3.2.2.1
Uno elevado a cualquier potencia es uno.
Paso 1.3.2.2.2
Divide por .
Paso 1.4
Evalúa cuando .
Paso 1.4.1
Sustituye por .
Paso 1.4.2
Simplifica .
Paso 1.4.2.1
Simplifica el denominador.
Paso 1.4.2.1.1
Aplica la regla del producto a .
Paso 1.4.2.1.2
Eleva a la potencia de .
Paso 1.4.2.1.3
Aplica la regla del producto a .
Paso 1.4.2.1.4
Eleva a la potencia de .
Paso 1.4.2.1.5
Reescribe como .
Paso 1.4.2.1.6
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.4.2.1.6.1
Aplica la propiedad distributiva.
Paso 1.4.2.1.6.2
Aplica la propiedad distributiva.
Paso 1.4.2.1.6.3
Aplica la propiedad distributiva.
Paso 1.4.2.1.7
Simplifica y combina los términos similares.
Paso 1.4.2.1.7.1
Simplifica cada término.
Paso 1.4.2.1.7.1.1
Multiplica por .
Paso 1.4.2.1.7.1.2
Multiplica por .
Paso 1.4.2.1.7.1.3
Multiplica por .
Paso 1.4.2.1.7.1.4
Multiplica .
Paso 1.4.2.1.7.1.4.1
Multiplica por .
Paso 1.4.2.1.7.1.4.2
Multiplica por .
Paso 1.4.2.1.7.1.4.3
Eleva a la potencia de .
Paso 1.4.2.1.7.1.4.4
Eleva a la potencia de .
Paso 1.4.2.1.7.1.4.5
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.2.1.7.1.4.6
Suma y .
Paso 1.4.2.1.7.1.4.7
Eleva a la potencia de .
Paso 1.4.2.1.7.1.4.8
Eleva a la potencia de .
Paso 1.4.2.1.7.1.4.9
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.2.1.7.1.4.10
Suma y .
Paso 1.4.2.1.7.1.5
Reescribe como .
Paso 1.4.2.1.7.1.5.1
Usa para reescribir como .
Paso 1.4.2.1.7.1.5.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.4.2.1.7.1.5.3
Combina y .
Paso 1.4.2.1.7.1.5.4
Cancela el factor común de .
Paso 1.4.2.1.7.1.5.4.1
Cancela el factor común.
Paso 1.4.2.1.7.1.5.4.2
Reescribe la expresión.
Paso 1.4.2.1.7.1.5.5
Evalúa el exponente.
Paso 1.4.2.1.7.1.6
Reescribe como .
Paso 1.4.2.1.7.1.7
Multiplica por .
Paso 1.4.2.1.7.2
Resta de .
Paso 1.4.2.1.7.3
Resta de .
Paso 1.4.2.1.8
Reordena y .
Paso 1.4.2.1.9
Cancela el factor común de y .
Paso 1.4.2.1.9.1
Factoriza de .
Paso 1.4.2.1.9.2
Factoriza de .
Paso 1.4.2.1.9.3
Factoriza de .
Paso 1.4.2.1.9.4
Cancela los factores comunes.
Paso 1.4.2.1.9.4.1
Factoriza de .
Paso 1.4.2.1.9.4.2
Cancela el factor común.
Paso 1.4.2.1.9.4.3
Reescribe la expresión.
Paso 1.4.2.1.10
Multiplica por .
Paso 1.4.2.2
Multiplica el numerador por la recíproca del denominador.
Paso 1.4.2.3
Multiplica el numerador y el denominador de por el conjugado de para hacer real el denominador.
Paso 1.4.2.4
Multiplica.
Paso 1.4.2.4.1
Combinar.
Paso 1.4.2.4.2
Simplifica el numerador.
Paso 1.4.2.4.2.1
Aplica la propiedad distributiva.
Paso 1.4.2.4.2.2
Multiplica por .
Paso 1.4.2.4.2.3
Multiplica por .
Paso 1.4.2.4.3
Simplifica el denominador.
Paso 1.4.2.4.3.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.4.2.4.3.1.1
Aplica la propiedad distributiva.
Paso 1.4.2.4.3.1.2
Aplica la propiedad distributiva.
Paso 1.4.2.4.3.1.3
Aplica la propiedad distributiva.
Paso 1.4.2.4.3.2
Simplifica.
Paso 1.4.2.4.3.2.1
Multiplica por .
Paso 1.4.2.4.3.2.2
Multiplica por .
Paso 1.4.2.4.3.2.3
Multiplica por .
Paso 1.4.2.4.3.2.4
Multiplica por .
Paso 1.4.2.4.3.2.5
Eleva a la potencia de .
Paso 1.4.2.4.3.2.6
Eleva a la potencia de .
Paso 1.4.2.4.3.2.7
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.2.4.3.2.8
Suma y .
Paso 1.4.2.4.3.2.9
Suma y .
Paso 1.4.2.4.3.3
Simplifica cada término.
Paso 1.4.2.4.3.3.1
Multiplica por .
Paso 1.4.2.4.3.3.2
Reescribe como .
Paso 1.4.2.4.3.3.3
Multiplica por .
Paso 1.4.2.4.3.4
Suma y .
Paso 1.4.2.4.3.5
Suma y .
Paso 1.4.2.5
Reescribe como .
Paso 1.4.2.6
Factoriza de .
Paso 1.4.2.7
Factoriza de .
Paso 1.4.2.8
Factoriza de .
Paso 1.4.2.9
Separa las fracciones.
Paso 1.4.2.10
Simplifica la expresión.
Paso 1.4.2.10.1
Divide por .
Paso 1.4.2.10.2
Divide por .
Paso 1.4.2.11
Aplica la propiedad distributiva.
Paso 1.4.2.12
Multiplica.
Paso 1.4.2.12.1
Multiplica por .
Paso 1.4.2.12.2
Multiplica por .
Paso 1.4.2.13
Aplica la propiedad distributiva.
Paso 1.4.2.14
Multiplica.
Paso 1.4.2.14.1
Multiplica por .
Paso 1.4.2.14.2
Multiplica por .
Paso 1.5
Evalúa cuando .
Paso 1.5.1
Sustituye por .
Paso 1.5.2
Simplifica .
Paso 1.5.2.1
Simplifica el denominador.
Paso 1.5.2.1.1
Aplica la regla del producto a .
Paso 1.5.2.1.2
Eleva a la potencia de .
Paso 1.5.2.1.3
Aplica la regla del producto a .
Paso 1.5.2.1.4
Eleva a la potencia de .
Paso 1.5.2.1.5
Reescribe como .
Paso 1.5.2.1.6
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.5.2.1.6.1
Aplica la propiedad distributiva.
Paso 1.5.2.1.6.2
Aplica la propiedad distributiva.
Paso 1.5.2.1.6.3
Aplica la propiedad distributiva.
Paso 1.5.2.1.7
Simplifica y combina los términos similares.
Paso 1.5.2.1.7.1
Simplifica cada término.
Paso 1.5.2.1.7.1.1
Multiplica por .
Paso 1.5.2.1.7.1.2
Multiplica por .
Paso 1.5.2.1.7.1.3
Multiplica por .
Paso 1.5.2.1.7.1.4
Multiplica .
Paso 1.5.2.1.7.1.4.1
Eleva a la potencia de .
Paso 1.5.2.1.7.1.4.2
Eleva a la potencia de .
Paso 1.5.2.1.7.1.4.3
Usa la regla de la potencia para combinar exponentes.
Paso 1.5.2.1.7.1.4.4
Suma y .
Paso 1.5.2.1.7.1.4.5
Eleva a la potencia de .
Paso 1.5.2.1.7.1.4.6
Eleva a la potencia de .
Paso 1.5.2.1.7.1.4.7
Usa la regla de la potencia para combinar exponentes.
Paso 1.5.2.1.7.1.4.8
Suma y .
Paso 1.5.2.1.7.1.5
Reescribe como .
Paso 1.5.2.1.7.1.6
Reescribe como .
Paso 1.5.2.1.7.1.6.1
Usa para reescribir como .
Paso 1.5.2.1.7.1.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.5.2.1.7.1.6.3
Combina y .
Paso 1.5.2.1.7.1.6.4
Cancela el factor común de .
Paso 1.5.2.1.7.1.6.4.1
Cancela el factor común.
Paso 1.5.2.1.7.1.6.4.2
Reescribe la expresión.
Paso 1.5.2.1.7.1.6.5
Evalúa el exponente.
Paso 1.5.2.1.7.1.7
Multiplica por .
Paso 1.5.2.1.7.2
Resta de .
Paso 1.5.2.1.7.3
Suma y .
Paso 1.5.2.1.8
Reordena y .
Paso 1.5.2.1.9
Cancela el factor común de y .
Paso 1.5.2.1.9.1
Factoriza de .
Paso 1.5.2.1.9.2
Factoriza de .
Paso 1.5.2.1.9.3
Factoriza de .
Paso 1.5.2.1.9.4
Cancela los factores comunes.
Paso 1.5.2.1.9.4.1
Factoriza de .
Paso 1.5.2.1.9.4.2
Cancela el factor común.
Paso 1.5.2.1.9.4.3
Reescribe la expresión.
Paso 1.5.2.1.10
Multiplica por .
Paso 1.5.2.2
Multiplica el numerador por la recíproca del denominador.
Paso 1.5.2.3
Multiplica el numerador y el denominador de por el conjugado de para hacer real el denominador.
Paso 1.5.2.4
Multiplica.
Paso 1.5.2.4.1
Combinar.
Paso 1.5.2.4.2
Simplifica el numerador.
Paso 1.5.2.4.2.1
Aplica la propiedad distributiva.
Paso 1.5.2.4.2.2
Multiplica por .
Paso 1.5.2.4.2.3
Multiplica por .
Paso 1.5.2.4.3
Simplifica el denominador.
Paso 1.5.2.4.3.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.5.2.4.3.1.1
Aplica la propiedad distributiva.
Paso 1.5.2.4.3.1.2
Aplica la propiedad distributiva.
Paso 1.5.2.4.3.1.3
Aplica la propiedad distributiva.
Paso 1.5.2.4.3.2
Simplifica.
Paso 1.5.2.4.3.2.1
Multiplica por .
Paso 1.5.2.4.3.2.2
Multiplica por .
Paso 1.5.2.4.3.2.3
Multiplica por .
Paso 1.5.2.4.3.2.4
Multiplica por .
Paso 1.5.2.4.3.2.5
Eleva a la potencia de .
Paso 1.5.2.4.3.2.6
Eleva a la potencia de .
Paso 1.5.2.4.3.2.7
Usa la regla de la potencia para combinar exponentes.
Paso 1.5.2.4.3.2.8
Suma y .
Paso 1.5.2.4.3.2.9
Resta de .
Paso 1.5.2.4.3.3
Simplifica cada término.
Paso 1.5.2.4.3.3.1
Multiplica por .
Paso 1.5.2.4.3.3.2
Reescribe como .
Paso 1.5.2.4.3.3.3
Multiplica por .
Paso 1.5.2.4.3.4
Suma y .
Paso 1.5.2.4.3.5
Suma y .
Paso 1.5.2.5
Reescribe como .
Paso 1.5.2.6
Factoriza de .
Paso 1.5.2.7
Factoriza de .
Paso 1.5.2.8
Factoriza de .
Paso 1.5.2.9
Separa las fracciones.
Paso 1.5.2.10
Simplifica la expresión.
Paso 1.5.2.10.1
Divide por .
Paso 1.5.2.10.2
Divide por .
Paso 1.5.2.11
Aplica la propiedad distributiva.
Paso 1.5.2.12
Multiplica.
Paso 1.5.2.12.1
Multiplica por .
Paso 1.5.2.12.2
Multiplica por .
Paso 1.5.2.13
Aplica la propiedad distributiva.
Paso 1.5.2.14
Multiplica.
Paso 1.5.2.14.1
Multiplica por .
Paso 1.5.2.14.2
Multiplica por .
Paso 1.6
Enumera todas las soluciones.
Paso 2
El área entre las curvas dadas es no acotada.
Área no acotada
Paso 3