Cálculo Ejemplos

Hallar el valor Máximo/Mínimo (x^2)/2- logaritmo natural de x
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Toca para ver más pasos...
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Combina y .
Paso 1.2.4
Combina y .
Paso 1.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.5.1
Cancela el factor común.
Paso 1.2.5.2
Divide por .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
La derivada de con respecto a es .
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Diferencia.
Toca para ver más pasos...
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5
Multiplica por .
Paso 2.2.6
Multiplica por .
Paso 2.2.7
Multiplica por .
Paso 2.2.8
Suma y .
Paso 2.3
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.4
Reordena los términos.
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Toca para ver más pasos...
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Combina y .
Paso 4.1.2.4
Combina y .
Paso 4.1.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.2.5.1
Cancela el factor común.
Paso 4.1.2.5.2
Divide por .
Paso 4.1.3
Evalúa .
Toca para ver más pasos...
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
La derivada de con respecto a es .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 5.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 5.2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 5.3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 5.3.1
Multiplica cada término en por .
Paso 5.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.3.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.3.2.1.1
Multiplica por .
Paso 5.3.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.2.1.2.1
Mueve el signo menos inicial en al numerador.
Paso 5.3.2.1.2.2
Cancela el factor común.
Paso 5.3.2.1.2.3
Reescribe la expresión.
Paso 5.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.3.1
Multiplica por .
Paso 5.4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 5.4.1
Suma a ambos lados de la ecuación.
Paso 5.4.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.4.3
Cualquier raíz de es .
Paso 5.4.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 5.4.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.4.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.4.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Simplifica cada término.
Toca para ver más pasos...
Paso 9.1.1
Uno elevado a cualquier potencia es uno.
Paso 9.1.2
Divide por .
Paso 9.2
Suma y .
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Obtén el valor de y cuando .
Toca para ver más pasos...
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 11.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 11.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 11.2.1.2
El logaritmo natural de es .
Paso 11.2.1.3
Multiplica por .
Paso 11.2.2
Suma y .
Paso 11.2.3
La respuesta final es .
Paso 12
Estos son los extremos locales de .
es un mínimo local
Paso 13