Cálculo Ejemplos

Evaluar utilizando la regla de L'Hôpital limite a medida que x se aproxima a infinity de (11x^2-2x+8)/(2-x)
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
El límite al infinito de un polinomio con coeficiente principal positivo es infinito.
Paso 1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.3.1
Reordena y .
Paso 1.3.2
El límite al infinito de un polinomio con coeficiente principal negativo es infinito negativo.
Paso 1.3.3
Infinito dividido por infinito es indefinido.
Indefinida
Paso 1.4
Infinito dividido por infinito es indefinido.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Evalúa .
Toca para ver más pasos...
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3
Multiplica por .
Paso 3.4
Evalúa .
Toca para ver más pasos...
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.3
Multiplica por .
Paso 3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.6
Suma y .
Paso 3.7
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.9
Evalúa .
Toca para ver más pasos...
Paso 3.9.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.9.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.9.3
Multiplica por .
Paso 3.10
Resta de .
Paso 4
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 4.1
Mueve el negativo del denominador de .
Paso 4.2
Aplica la propiedad distributiva.
Paso 4.3
Multiplica.
Toca para ver más pasos...
Paso 4.3.1
Multiplica por .
Paso 4.3.2
Multiplica por .
Paso 5
El límite al infinito de un polinomio con coeficiente principal negativo es infinito negativo.