Cálculo Ejemplos

Hallar los puntos críticos 20-20000000/(x^2)
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1
Diferencia.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2
Reescribe como .
Paso 1.1.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.1.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3.3
Reemplaza todos los casos de con .
Paso 1.1.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.5
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 1.1.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.1.2.5.2
Multiplica por .
Paso 1.1.2.6
Multiplica por .
Paso 1.1.2.7
Eleva a la potencia de .
Paso 1.1.2.8
Usa la regla de la potencia para combinar exponentes.
Paso 1.1.2.9
Resta de .
Paso 1.1.2.10
Multiplica por .
Paso 1.1.3
Simplifica.
Toca para ver más pasos...
Paso 1.1.3.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 1.1.3.2
Combina los términos.
Toca para ver más pasos...
Paso 1.1.3.2.1
Combina y .
Paso 1.1.3.2.2
Suma y .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 3
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 3.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.2
Resuelve
Toca para ver más pasos...
Paso 3.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.2.2
Simplifica .
Toca para ver más pasos...
Paso 3.2.2.1
Reescribe como .
Paso 3.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales.
Paso 4
Evalúa en cada valor donde la derivada sea o indefinida.
Toca para ver más pasos...
Paso 4.1
Evalúa en .
Toca para ver más pasos...
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Toca para ver más pasos...
Paso 4.1.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.2
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Indefinida
Indefinida
Indefinida
Paso 5
No hay valores de en el dominio del problema original donde la derivada es o indefinida.
No se obtuvieron puntos críticos