Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Paso 1.2.1
Evalúa el límite.
Paso 1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.1.2
Mueve el límite dentro del exponente.
Paso 1.2.1.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.2.1.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.3
Simplifica la respuesta.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Multiplica por .
Paso 1.2.3.1.2
Cualquier valor elevado a es .
Paso 1.2.3.1.3
Multiplica por .
Paso 1.2.3.2
Resta de .
Paso 1.3
Evalúa el límite del denominador.
Paso 1.3.1
Mueve el límite dentro de la función trigonométrica porque la tangente es continua.
Paso 1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.3
El valor exacto de es .
Paso 1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Evalúa .
Paso 3.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.3.1.3
Reemplaza todos los casos de con .
Paso 3.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.4
Multiplica por .
Paso 3.3.5
Mueve a la izquierda de .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Suma y .
Paso 3.6
La derivada de con respecto a es .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 6
Mueve el límite dentro del exponente.
Paso 7
Mueve el término fuera del límite porque es constante con respecto a .
Paso 8
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 9
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 10
Paso 10.1
Evalúa el límite de mediante el ingreso de para .
Paso 10.2
Evalúa el límite de mediante el ingreso de para .
Paso 11
Paso 11.1
Simplifica el numerador.
Paso 11.1.1
Multiplica por .
Paso 11.1.2
Cualquier valor elevado a es .
Paso 11.2
Simplifica el denominador.
Paso 11.2.1
El valor exacto de es .
Paso 11.2.2
Uno elevado a cualquier potencia es uno.
Paso 11.3
Cancela el factor común de .
Paso 11.3.1
Cancela el factor común.
Paso 11.3.2
Reescribe la expresión.
Paso 11.4
Multiplica por .