Cálculo Ejemplos

أوجد المشتق باستخدام قاعدة السلسلة- d/dx J_j(theta)=-y^(j) logaritmo de sigma(x^(j)*theta)-(1-y^(j)) logaritmo de 1-sigma(x^(j)*theta)
Paso 1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2
Evalúa .
Toca para ver más pasos...
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3
Evalúa .
Toca para ver más pasos...
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.2
La derivada de con respecto a es .
Paso 3.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.7
Resta de .
Paso 3.8
Combina y .
Paso 3.9
Combina y .
Paso 3.10
Combina y .
Paso 3.11
Combina y .
Paso 3.12
Multiplica por .
Paso 3.13
Multiplica por .
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Aplica la propiedad distributiva.
Paso 4.2
Multiplica por .
Paso 4.3
Reordena los términos.