Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas x^2 logaritmo natural de x
Paso 1
Escribe como una función.
Paso 2
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.1.2
La derivada de con respecto a es .
Paso 2.1.3
Diferencia con la regla de la potencia.
Toca para ver más pasos...
Paso 2.1.3.1
Combina y .
Paso 2.1.3.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.1.3.2.1
Factoriza de .
Paso 2.1.3.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.1.3.2.2.1
Eleva a la potencia de .
Paso 2.1.3.2.2.2
Factoriza de .
Paso 2.1.3.2.2.3
Cancela el factor común.
Paso 2.1.3.2.2.4
Reescribe la expresión.
Paso 2.1.3.2.2.5
Divide por .
Paso 2.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.4
Reordena los términos.
Paso 2.2
La primera derivada de con respecto a es .
Paso 3
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Establece la primera derivada igual a .
Paso 3.2
Resta de ambos lados de la ecuación.
Paso 3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Reescribe la expresión.
Paso 3.3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.2.2.1
Cancela el factor común.
Paso 3.3.2.2.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.3.1.1
Cancela el factor común.
Paso 3.3.3.1.2
Reescribe la expresión.
Paso 3.3.3.2
Mueve el negativo al frente de la fracción.
Paso 3.4
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.5
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.6
Resuelve
Toca para ver más pasos...
Paso 3.6.1
Reescribe la ecuación como .
Paso 3.6.2
Reescribe la expresión mediante la regla del exponente negativo .
Paso 4
Los valores que hacen que la derivada sea igual a son .
Paso 5
Obtén dónde la derivada es indefinida.
Toca para ver más pasos...
Paso 5.1
Establece el argumento en menor o igual que para obtener el lugar donde no está definida la expresión.
Paso 5.2
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 6
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 7
Excluye los intervalos que no están en el dominio.
Paso 8
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 8.2.1
Elimina los paréntesis.
Paso 8.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 8.2.2.1
Multiplica por .
Paso 8.2.2.2
Simplifica al mover dentro del algoritmo.
Paso 8.2.2.3
Eleva a la potencia de .
Paso 8.2.3
Suma y .
Paso 8.2.4
La respuesta final es .
Paso 8.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 9
Excluye los intervalos que no están en el dominio.
Paso 10
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 10.1
Reemplaza la variable con en la expresión.
Paso 10.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 10.2.1
Elimina los paréntesis.
Paso 10.2.2
Simplifica cada término.
Toca para ver más pasos...
Paso 10.2.2.1
Multiplica por .
Paso 10.2.2.2
Simplifica al mover dentro del algoritmo.
Paso 10.2.2.3
Eleva a la potencia de .
Paso 10.2.3
Suma y .
Paso 10.2.4
La respuesta final es .
Paso 10.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 11
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 12