Cálculo Ejemplos

أوجد المشتق Second y=x(2x+3)^5
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Toca para ver más pasos...
Paso 1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4
Multiplica por .
Paso 1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.3.6.1
Suma y .
Paso 1.3.6.2
Multiplica por .
Paso 1.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.8
Multiplica por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Factoriza de .
Toca para ver más pasos...
Paso 1.4.1.1
Factoriza de .
Paso 1.4.1.2
Factoriza de .
Paso 1.4.1.3
Factoriza de .
Paso 1.4.2
Combina los términos.
Toca para ver más pasos...
Paso 1.4.2.1
Mueve a la izquierda de .
Paso 1.4.2.2
Suma y .
Paso 2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2
Diferencia.
Toca para ver más pasos...
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.4
Multiplica por .
Paso 2.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.2.6.1
Suma y .
Paso 2.2.6.2
Mueve a la izquierda de .
Paso 2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Reemplaza todos los casos de con .
Paso 2.4
Diferencia.
Toca para ver más pasos...
Paso 2.4.1
Mueve a la izquierda de .
Paso 2.4.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.4.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.5
Multiplica por .
Paso 2.4.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.7
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.4.7.1
Suma y .
Paso 2.4.7.2
Multiplica por .
Paso 2.5
Simplifica.
Toca para ver más pasos...
Paso 2.5.1
Aplica la propiedad distributiva.
Paso 2.5.2
Multiplica por .
Paso 2.5.3
Multiplica por .
Paso 2.5.4
Factoriza de .
Toca para ver más pasos...
Paso 2.5.4.1
Factoriza de .
Paso 2.5.4.2
Factoriza de .
Paso 2.5.4.3
Factoriza de .