Cálculo Ejemplos

Hallar dónde aumenta o desciende la función utilizando derivadas (x^2)/((x-2)^3)
Paso 1
Escribe como una función.
Paso 2
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 2.1.1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2.1.2
Diferencia con la regla de la potencia.
Toca para ver más pasos...
Paso 2.1.2.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.1.2.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.2.1.2
Multiplica por .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Mueve a la izquierda de .
Paso 2.1.3
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.1.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.3
Reemplaza todos los casos de con .
Paso 2.1.4
Diferencia.
Toca para ver más pasos...
Paso 2.1.4.1
Multiplica por .
Paso 2.1.4.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.4.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.4.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.4.5
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.1.4.5.1
Suma y .
Paso 2.1.4.5.2
Multiplica por .
Paso 2.1.5
Simplifica.
Toca para ver más pasos...
Paso 2.1.5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.1.5.1.1
Factoriza de .
Toca para ver más pasos...
Paso 2.1.5.1.1.1
Factoriza de .
Paso 2.1.5.1.1.2
Factoriza de .
Paso 2.1.5.1.1.3
Factoriza de .
Paso 2.1.5.1.2
Aplica la propiedad distributiva.
Paso 2.1.5.1.3
Multiplica por .
Paso 2.1.5.1.4
Resta de .
Paso 2.1.5.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.1.5.2.1
Factoriza de .
Paso 2.1.5.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.1.5.2.2.1
Factoriza de .
Paso 2.1.5.2.2.2
Cancela el factor común.
Paso 2.1.5.2.2.3
Reescribe la expresión.
Paso 2.1.5.3
Factoriza de .
Paso 2.1.5.4
Reescribe como .
Paso 2.1.5.5
Factoriza de .
Paso 2.1.5.6
Reescribe como .
Paso 2.1.5.7
Mueve el negativo al frente de la fracción.
Paso 2.2
La primera derivada de con respecto a es .
Paso 3
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 3.1
Establece la primera derivada igual a .
Paso 3.2
Establece el numerador igual a cero.
Paso 3.3
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 3.3.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.3.2
Establece igual a .
Paso 3.3.3
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.3.3.1
Establece igual a .
Paso 3.3.3.2
Resta de ambos lados de la ecuación.
Paso 3.3.4
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Los valores que hacen que la derivada sea igual a son .
Paso 5
Obtén dónde la derivada es indefinida.
Toca para ver más pasos...
Paso 5.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 5.2
Resuelve
Toca para ver más pasos...
Paso 5.2.1
Establece igual a .
Paso 5.2.2
Suma a ambos lados de la ecuación.
Paso 6
Divide en intervalos separados alrededor de los valores de que hacen que la derivada sea o indefinida.
Paso 7
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 7.2.1
Suma y .
Paso 7.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 7.2.2.1
Resta de .
Paso 7.2.2.2
Eleva a la potencia de .
Paso 7.2.3
Multiplica por .
Paso 7.2.4
La respuesta final es .
Paso 7.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 8.2.1
Suma y .
Paso 8.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 8.2.2.1
Resta de .
Paso 8.2.2.2
Eleva a la potencia de .
Paso 8.2.3
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 8.2.3.1
Multiplica por .
Paso 8.2.3.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 8.2.3.2.1
Factoriza de .
Paso 8.2.3.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 8.2.3.2.2.1
Factoriza de .
Paso 8.2.3.2.2.2
Cancela el factor común.
Paso 8.2.3.2.2.3
Reescribe la expresión.
Paso 8.2.3.3
Mueve el negativo al frente de la fracción.
Paso 8.2.4
La respuesta final es .
Paso 8.3
En la derivada es . Dado que es positivo, la función aumenta en .
Incremento en ya que
Incremento en ya que
Paso 9
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 9.1
Reemplaza la variable con en la expresión.
Paso 9.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 9.2.1
Multiplica por .
Paso 9.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 9.2.2.1
Resta de .
Paso 9.2.2.2
Eleva a la potencia de .
Paso 9.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 9.2.3.1
Suma y .
Paso 9.2.3.2
Divide por .
Paso 9.2.3.3
Multiplica por .
Paso 9.2.4
La respuesta final es .
Paso 9.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 10
Sustituye un valor del intervalo en la derivada para determinar si la función está aumentando o disminuyendo.
Toca para ver más pasos...
Paso 10.1
Reemplaza la variable con en la expresión.
Paso 10.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 10.2.1
Suma y .
Paso 10.2.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 10.2.2.1
Resta de .
Paso 10.2.2.2
Uno elevado a cualquier potencia es uno.
Paso 10.2.3
Simplifica la expresión.
Toca para ver más pasos...
Paso 10.2.3.1
Multiplica por .
Paso 10.2.3.2
Divide por .
Paso 10.2.3.3
Multiplica por .
Paso 10.2.4
La respuesta final es .
Paso 10.3
En la derivada es . Dado que esto es negativo, la función está disminuyendo en .
Decrecimiento en desde
Decrecimiento en desde
Paso 11
Enumera los intervalos en los que la función aumenta y disminuye.
Incremento en:
Decrecimiento en:
Paso 12