Cálculo Ejemplos

أوجد المشتق - d/d@VAR r(t)=e^(5t)i+e^(5t)cos(t)j+e^(5t)sin(t)k
Paso 1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2
Evalúa .
Toca para ver más pasos...
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.5
Multiplica por .
Paso 2.6
Mueve a la izquierda de .
Paso 2.7
Mueve a la izquierda de .
Paso 3
Evalúa .
Toca para ver más pasos...
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.3
La derivada de con respecto a es .
Paso 3.4
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.4.1
Para aplicar la regla de la cadena, establece como .
Paso 3.4.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.4.3
Reemplaza todos los casos de con .
Paso 3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.7
Multiplica por .
Paso 3.8
Mueve a la izquierda de .
Paso 4
Evalúa .
Toca para ver más pasos...
Paso 4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.3
La derivada de con respecto a es .
Paso 4.4
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 4.4.1
Para aplicar la regla de la cadena, establece como .
Paso 4.4.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4.4.3
Reemplaza todos los casos de con .
Paso 4.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.7
Multiplica por .
Paso 4.8
Mueve a la izquierda de .
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
Aplica la propiedad distributiva.
Paso 5.2
Aplica la propiedad distributiva.
Paso 5.3
Elimina los paréntesis innecesarios.
Paso 5.4
Reordena los términos.
Paso 5.5
Reordena los factores en .