Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.3.3
La derivada de con respecto a es .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Combina y .
Paso 1.3.6
Cancela el factor común de .
Paso 1.3.6.1
Cancela el factor común.
Paso 1.3.6.2
Reescribe la expresión.
Paso 1.3.7
Multiplica por .
Paso 1.4
Simplifica.
Paso 1.4.1
Aplica la propiedad distributiva.
Paso 1.4.2
Multiplica por .
Paso 2
Paso 2.1
Diferencia.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
La derivada de con respecto a es .
Paso 2.2.3
Combina y .
Paso 2.2.4
Mueve el negativo al frente de la fracción.
Paso 2.3
Combina los términos.
Paso 2.3.1
Suma y .
Paso 2.3.2
Resta de .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Multiplica por .
Paso 4.1.3
Evalúa .
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.3.3
La derivada de con respecto a es .
Paso 4.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.5
Combina y .
Paso 4.1.3.6
Cancela el factor común de .
Paso 4.1.3.6.1
Cancela el factor común.
Paso 4.1.3.6.2
Reescribe la expresión.
Paso 4.1.3.7
Multiplica por .
Paso 4.1.4
Simplifica.
Paso 4.1.4.1
Aplica la propiedad distributiva.
Paso 4.1.4.2
Multiplica por .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 5.2.1
Resta de ambos lados de la ecuación.
Paso 5.2.2
Suma a ambos lados de la ecuación.
Paso 5.3
Divide cada término en por y simplifica.
Paso 5.3.1
Divide cada término en por .
Paso 5.3.2
Simplifica el lado izquierdo.
Paso 5.3.2.1
Cancela el factor común de .
Paso 5.3.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2
Divide por .
Paso 5.3.3
Simplifica el lado derecho.
Paso 5.3.3.1
Simplifica cada término.
Paso 5.3.3.1.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.3.3.1.2
Divide por .
Paso 5.4
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 5.5
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 5.6
Reescribe la ecuación como .
Paso 6
Paso 6.1
Establece el argumento en menor o igual que para obtener el lugar donde no está definida la expresión.
Paso 6.2
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Paso 9.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 9.2
Combina y .
Paso 9.3
Combina los numeradores sobre el denominador común.
Paso 9.4
Multiplica por .
Paso 10
Como la prueba de la primera derivada falló, no hay extremos locales.
No hay extremos locales
Paso 11