Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.3
Diferencia.
Paso 1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4
Multiplica por .
Paso 1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.6
Simplifica la expresión.
Paso 1.3.6.1
Suma y .
Paso 1.3.6.2
Mueve a la izquierda de .
Paso 1.4
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.4.1
Para aplicar la regla de la cadena, establece como .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Reemplaza todos los casos de con .
Paso 1.5
Diferencia.
Paso 1.5.1
Mueve a la izquierda de .
Paso 1.5.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.5.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.5.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5.5
Simplifica la expresión.
Paso 1.5.5.1
Suma y .
Paso 1.5.5.2
Multiplica por .
Paso 1.6
Simplifica.
Paso 1.6.1
Aplica la propiedad distributiva.
Paso 1.6.2
Aplica la propiedad distributiva.
Paso 1.6.3
Combina los términos.
Paso 1.6.3.1
Combina y .
Paso 1.6.3.2
Combina y .
Paso 1.6.3.3
Cancela el factor común de y .
Paso 1.6.3.3.1
Factoriza de .
Paso 1.6.3.3.2
Cancela los factores comunes.
Paso 1.6.3.3.2.1
Factoriza de .
Paso 1.6.3.3.2.2
Cancela el factor común.
Paso 1.6.3.3.2.3
Reescribe la expresión.
Paso 1.6.3.4
Multiplica por .
Paso 1.6.3.5
Multiplica por .
Paso 1.6.3.6
Combina y .
Paso 1.6.3.7
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.6.3.8
Combina y .
Paso 1.6.3.9
Combina los numeradores sobre el denominador común.
Paso 1.6.3.10
Combina y .
Paso 1.6.3.11
Cancela el factor común de y .
Paso 1.6.3.11.1
Factoriza de .
Paso 1.6.3.11.2
Cancela los factores comunes.
Paso 1.6.3.11.2.1
Factoriza de .
Paso 1.6.3.11.2.2
Cancela el factor común.
Paso 1.6.3.11.2.3
Reescribe la expresión.
Paso 1.6.4
Reordena los términos.
Paso 1.6.5
Simplifica el numerador.
Paso 1.6.5.1
Usa el teorema del binomio.
Paso 1.6.5.2
Simplifica cada término.
Paso 1.6.5.2.1
Multiplica por .
Paso 1.6.5.2.2
Eleva a la potencia de .
Paso 1.6.5.2.3
Multiplica por .
Paso 1.6.5.2.4
Eleva a la potencia de .
Paso 1.6.5.3
Aplica la propiedad distributiva.
Paso 1.6.5.4
Cancela el factor común de .
Paso 1.6.5.4.1
Factoriza de .
Paso 1.6.5.4.2
Cancela el factor común.
Paso 1.6.5.4.3
Reescribe la expresión.
Paso 1.6.5.5
Cancela el factor común de .
Paso 1.6.5.5.1
Cancela el factor común.
Paso 1.6.5.5.2
Reescribe la expresión.
Paso 1.6.5.6
Simplifica cada término.
Paso 1.6.5.6.1
Reescribe como .
Paso 1.6.5.6.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.6.5.6.2.1
Aplica la propiedad distributiva.
Paso 1.6.5.6.2.2
Aplica la propiedad distributiva.
Paso 1.6.5.6.2.3
Aplica la propiedad distributiva.
Paso 1.6.5.6.3
Simplifica y combina los términos similares.
Paso 1.6.5.6.3.1
Simplifica cada término.
Paso 1.6.5.6.3.1.1
Multiplica por .
Paso 1.6.5.6.3.1.2
Mueve a la izquierda de .
Paso 1.6.5.6.3.1.3
Reescribe como .
Paso 1.6.5.6.3.1.4
Reescribe como .
Paso 1.6.5.6.3.1.5
Multiplica por .
Paso 1.6.5.6.3.2
Resta de .
Paso 1.6.5.6.4
Aplica la propiedad distributiva.
Paso 1.6.5.6.5
Simplifica.
Paso 1.6.5.6.5.1
Multiplica por sumando los exponentes.
Paso 1.6.5.6.5.1.1
Mueve .
Paso 1.6.5.6.5.1.2
Multiplica por .
Paso 1.6.5.6.5.1.2.1
Eleva a la potencia de .
Paso 1.6.5.6.5.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.6.5.6.5.1.3
Suma y .
Paso 1.6.5.6.5.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.6.5.6.5.3
Multiplica por .
Paso 1.6.5.6.6
Simplifica cada término.
Paso 1.6.5.6.6.1
Multiplica por sumando los exponentes.
Paso 1.6.5.6.6.1.1
Mueve .
Paso 1.6.5.6.6.1.2
Multiplica por .
Paso 1.6.5.6.6.2
Multiplica por .
Paso 1.6.5.6.7
Reescribe como .
Paso 1.6.5.6.8
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.6.5.6.8.1
Aplica la propiedad distributiva.
Paso 1.6.5.6.8.2
Aplica la propiedad distributiva.
Paso 1.6.5.6.8.3
Aplica la propiedad distributiva.
Paso 1.6.5.6.9
Simplifica y combina los términos similares.
Paso 1.6.5.6.9.1
Simplifica cada término.
Paso 1.6.5.6.9.1.1
Multiplica por .
Paso 1.6.5.6.9.1.2
Mueve a la izquierda de .
Paso 1.6.5.6.9.1.3
Reescribe como .
Paso 1.6.5.6.9.1.4
Reescribe como .
Paso 1.6.5.6.9.1.5
Multiplica por .
Paso 1.6.5.6.9.2
Resta de .
Paso 1.6.5.7
Suma y .
Paso 1.6.5.8
Resta de .
Paso 1.6.5.9
Suma y .
Paso 1.6.5.10
Resta de .
Paso 1.6.5.11
Suma y .
Paso 1.6.5.12
Suma y .
Paso 1.6.5.13
Suma y .
Paso 1.6.5.14
Reescribe en forma factorizada.
Paso 1.6.5.14.1
Factoriza de .
Paso 1.6.5.14.1.1
Factoriza de .
Paso 1.6.5.14.1.2
Factoriza de .
Paso 1.6.5.14.1.3
Factoriza de .
Paso 1.6.5.14.1.4
Factoriza de .
Paso 1.6.5.14.1.5
Factoriza de .
Paso 1.6.5.14.2
Factoriza con la regla del cuadrado perfecto.
Paso 1.6.5.14.2.1
Reescribe como .
Paso 1.6.5.14.2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 1.6.5.14.2.3
Reescribe el polinomio.
Paso 1.6.5.14.2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 1.6.6
Cancela el factor común de .
Paso 1.6.6.1
Cancela el factor común.
Paso 1.6.6.2
Divide por .
Paso 1.6.7
Reescribe como .
Paso 1.6.8
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.6.8.1
Aplica la propiedad distributiva.
Paso 1.6.8.2
Aplica la propiedad distributiva.
Paso 1.6.8.3
Aplica la propiedad distributiva.
Paso 1.6.9
Simplifica y combina los términos similares.
Paso 1.6.9.1
Simplifica cada término.
Paso 1.6.9.1.1
Multiplica por .
Paso 1.6.9.1.2
Mueve a la izquierda de .
Paso 1.6.9.1.3
Reescribe como .
Paso 1.6.9.1.4
Reescribe como .
Paso 1.6.9.1.5
Multiplica por .
Paso 1.6.9.2
Resta de .
Paso 1.6.10
Aplica la propiedad distributiva.
Paso 1.6.11
Simplifica.
Paso 1.6.11.1
Multiplica por sumando los exponentes.
Paso 1.6.11.1.1
Multiplica por .
Paso 1.6.11.1.1.1
Eleva a la potencia de .
Paso 1.6.11.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.6.11.1.2
Suma y .
Paso 1.6.11.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.6.11.3
Multiplica por .
Paso 1.6.12
Multiplica por sumando los exponentes.
Paso 1.6.12.1
Mueve .
Paso 1.6.12.2
Multiplica por .
Paso 2
Paso 2.1
Diferencia.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.3
Diferencia.
Paso 4.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.4
Multiplica por .
Paso 4.1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.6
Simplifica la expresión.
Paso 4.1.3.6.1
Suma y .
Paso 4.1.3.6.2
Mueve a la izquierda de .
Paso 4.1.4
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.1.4.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4.3
Reemplaza todos los casos de con .
Paso 4.1.5
Diferencia.
Paso 4.1.5.1
Mueve a la izquierda de .
Paso 4.1.5.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.5.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.5.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5.5
Simplifica la expresión.
Paso 4.1.5.5.1
Suma y .
Paso 4.1.5.5.2
Multiplica por .
Paso 4.1.6
Simplifica.
Paso 4.1.6.1
Aplica la propiedad distributiva.
Paso 4.1.6.2
Aplica la propiedad distributiva.
Paso 4.1.6.3
Combina los términos.
Paso 4.1.6.3.1
Combina y .
Paso 4.1.6.3.2
Combina y .
Paso 4.1.6.3.3
Cancela el factor común de y .
Paso 4.1.6.3.3.1
Factoriza de .
Paso 4.1.6.3.3.2
Cancela los factores comunes.
Paso 4.1.6.3.3.2.1
Factoriza de .
Paso 4.1.6.3.3.2.2
Cancela el factor común.
Paso 4.1.6.3.3.2.3
Reescribe la expresión.
Paso 4.1.6.3.4
Multiplica por .
Paso 4.1.6.3.5
Multiplica por .
Paso 4.1.6.3.6
Combina y .
Paso 4.1.6.3.7
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.1.6.3.8
Combina y .
Paso 4.1.6.3.9
Combina los numeradores sobre el denominador común.
Paso 4.1.6.3.10
Combina y .
Paso 4.1.6.3.11
Cancela el factor común de y .
Paso 4.1.6.3.11.1
Factoriza de .
Paso 4.1.6.3.11.2
Cancela los factores comunes.
Paso 4.1.6.3.11.2.1
Factoriza de .
Paso 4.1.6.3.11.2.2
Cancela el factor común.
Paso 4.1.6.3.11.2.3
Reescribe la expresión.
Paso 4.1.6.4
Reordena los términos.
Paso 4.1.6.5
Simplifica el numerador.
Paso 4.1.6.5.1
Usa el teorema del binomio.
Paso 4.1.6.5.2
Simplifica cada término.
Paso 4.1.6.5.2.1
Multiplica por .
Paso 4.1.6.5.2.2
Eleva a la potencia de .
Paso 4.1.6.5.2.3
Multiplica por .
Paso 4.1.6.5.2.4
Eleva a la potencia de .
Paso 4.1.6.5.3
Aplica la propiedad distributiva.
Paso 4.1.6.5.4
Cancela el factor común de .
Paso 4.1.6.5.4.1
Factoriza de .
Paso 4.1.6.5.4.2
Cancela el factor común.
Paso 4.1.6.5.4.3
Reescribe la expresión.
Paso 4.1.6.5.5
Cancela el factor común de .
Paso 4.1.6.5.5.1
Cancela el factor común.
Paso 4.1.6.5.5.2
Reescribe la expresión.
Paso 4.1.6.5.6
Simplifica cada término.
Paso 4.1.6.5.6.1
Reescribe como .
Paso 4.1.6.5.6.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 4.1.6.5.6.2.1
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.2.2
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.2.3
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.3
Simplifica y combina los términos similares.
Paso 4.1.6.5.6.3.1
Simplifica cada término.
Paso 4.1.6.5.6.3.1.1
Multiplica por .
Paso 4.1.6.5.6.3.1.2
Mueve a la izquierda de .
Paso 4.1.6.5.6.3.1.3
Reescribe como .
Paso 4.1.6.5.6.3.1.4
Reescribe como .
Paso 4.1.6.5.6.3.1.5
Multiplica por .
Paso 4.1.6.5.6.3.2
Resta de .
Paso 4.1.6.5.6.4
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.5
Simplifica.
Paso 4.1.6.5.6.5.1
Multiplica por sumando los exponentes.
Paso 4.1.6.5.6.5.1.1
Mueve .
Paso 4.1.6.5.6.5.1.2
Multiplica por .
Paso 4.1.6.5.6.5.1.2.1
Eleva a la potencia de .
Paso 4.1.6.5.6.5.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.1.6.5.6.5.1.3
Suma y .
Paso 4.1.6.5.6.5.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.6.5.6.5.3
Multiplica por .
Paso 4.1.6.5.6.6
Simplifica cada término.
Paso 4.1.6.5.6.6.1
Multiplica por sumando los exponentes.
Paso 4.1.6.5.6.6.1.1
Mueve .
Paso 4.1.6.5.6.6.1.2
Multiplica por .
Paso 4.1.6.5.6.6.2
Multiplica por .
Paso 4.1.6.5.6.7
Reescribe como .
Paso 4.1.6.5.6.8
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 4.1.6.5.6.8.1
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.8.2
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.8.3
Aplica la propiedad distributiva.
Paso 4.1.6.5.6.9
Simplifica y combina los términos similares.
Paso 4.1.6.5.6.9.1
Simplifica cada término.
Paso 4.1.6.5.6.9.1.1
Multiplica por .
Paso 4.1.6.5.6.9.1.2
Mueve a la izquierda de .
Paso 4.1.6.5.6.9.1.3
Reescribe como .
Paso 4.1.6.5.6.9.1.4
Reescribe como .
Paso 4.1.6.5.6.9.1.5
Multiplica por .
Paso 4.1.6.5.6.9.2
Resta de .
Paso 4.1.6.5.7
Suma y .
Paso 4.1.6.5.8
Resta de .
Paso 4.1.6.5.9
Suma y .
Paso 4.1.6.5.10
Resta de .
Paso 4.1.6.5.11
Suma y .
Paso 4.1.6.5.12
Suma y .
Paso 4.1.6.5.13
Suma y .
Paso 4.1.6.5.14
Reescribe en forma factorizada.
Paso 4.1.6.5.14.1
Factoriza de .
Paso 4.1.6.5.14.1.1
Factoriza de .
Paso 4.1.6.5.14.1.2
Factoriza de .
Paso 4.1.6.5.14.1.3
Factoriza de .
Paso 4.1.6.5.14.1.4
Factoriza de .
Paso 4.1.6.5.14.1.5
Factoriza de .
Paso 4.1.6.5.14.2
Factoriza con la regla del cuadrado perfecto.
Paso 4.1.6.5.14.2.1
Reescribe como .
Paso 4.1.6.5.14.2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 4.1.6.5.14.2.3
Reescribe el polinomio.
Paso 4.1.6.5.14.2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 4.1.6.6
Cancela el factor común de .
Paso 4.1.6.6.1
Cancela el factor común.
Paso 4.1.6.6.2
Divide por .
Paso 4.1.6.7
Reescribe como .
Paso 4.1.6.8
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 4.1.6.8.1
Aplica la propiedad distributiva.
Paso 4.1.6.8.2
Aplica la propiedad distributiva.
Paso 4.1.6.8.3
Aplica la propiedad distributiva.
Paso 4.1.6.9
Simplifica y combina los términos similares.
Paso 4.1.6.9.1
Simplifica cada término.
Paso 4.1.6.9.1.1
Multiplica por .
Paso 4.1.6.9.1.2
Mueve a la izquierda de .
Paso 4.1.6.9.1.3
Reescribe como .
Paso 4.1.6.9.1.4
Reescribe como .
Paso 4.1.6.9.1.5
Multiplica por .
Paso 4.1.6.9.2
Resta de .
Paso 4.1.6.10
Aplica la propiedad distributiva.
Paso 4.1.6.11
Simplifica.
Paso 4.1.6.11.1
Multiplica por sumando los exponentes.
Paso 4.1.6.11.1.1
Multiplica por .
Paso 4.1.6.11.1.1.1
Eleva a la potencia de .
Paso 4.1.6.11.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.1.6.11.1.2
Suma y .
Paso 4.1.6.11.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.6.11.3
Multiplica por .
Paso 4.1.6.12
Multiplica por sumando los exponentes.
Paso 4.1.6.12.1
Mueve .
Paso 4.1.6.12.2
Multiplica por .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza el lado izquierdo de la ecuación.
Paso 5.2.1
Factoriza de .
Paso 5.2.1.1
Factoriza de .
Paso 5.2.1.2
Factoriza de .
Paso 5.2.1.3
Eleva a la potencia de .
Paso 5.2.1.4
Factoriza de .
Paso 5.2.1.5
Factoriza de .
Paso 5.2.1.6
Factoriza de .
Paso 5.2.2
Factoriza con la regla del cuadrado perfecto.
Paso 5.2.2.1
Reescribe como .
Paso 5.2.2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 5.2.2.3
Reescribe el polinomio.
Paso 5.2.2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a .
Paso 5.5
Establece igual a y resuelve .
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resuelve en .
Paso 5.5.2.1
Establece igual a .
Paso 5.5.2.2
Suma a ambos lados de la ecuación.
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Paso 9.1
Simplifica cada término.
Paso 9.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 9.1.2
Multiplica por .
Paso 9.1.3
Multiplica por .
Paso 9.2
Simplifica mediante la adición de números.
Paso 9.2.1
Suma y .
Paso 9.2.2
Suma y .
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Paso 11.2.1
Simplifica el numerador.
Paso 11.2.1.1
Resta de .
Paso 11.2.1.2
Multiplica por .
Paso 11.2.1.3
Suma y .
Paso 11.2.1.4
Eleva a la potencia de .
Paso 11.2.2
Simplifica la expresión.
Paso 11.2.2.1
Multiplica por .
Paso 11.2.2.2
Mueve el negativo al frente de la fracción.
Paso 11.2.3
La respuesta final es .
Paso 12
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 13
Paso 13.1
Simplifica cada término.
Paso 13.1.1
Uno elevado a cualquier potencia es uno.
Paso 13.1.2
Multiplica por .
Paso 13.1.3
Multiplica por .
Paso 13.2
Simplifica mediante suma y resta.
Paso 13.2.1
Resta de .
Paso 13.2.2
Suma y .
Paso 14
Paso 14.1
Divide en intervalos separados alrededor de los valores de que hacen que la primera derivada sea o indefinida.
Paso 14.2
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.2.1
Reemplaza la variable con en la expresión.
Paso 14.2.2
Simplifica el resultado.
Paso 14.2.2.1
Elimina los paréntesis.
Paso 14.2.2.2
Simplifica cada término.
Paso 14.2.2.2.1
Eleva a la potencia de .
Paso 14.2.2.2.2
Multiplica por sumando los exponentes.
Paso 14.2.2.2.2.1
Multiplica por .
Paso 14.2.2.2.2.1.1
Eleva a la potencia de .
Paso 14.2.2.2.2.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 14.2.2.2.2.2
Suma y .
Paso 14.2.2.2.3
Eleva a la potencia de .
Paso 14.2.2.3
Simplifica mediante la resta de números.
Paso 14.2.2.3.1
Resta de .
Paso 14.2.2.3.2
Resta de .
Paso 14.2.2.4
La respuesta final es .
Paso 14.3
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.3.1
Reemplaza la variable con en la expresión.
Paso 14.3.2
Simplifica el resultado.
Paso 14.3.2.1
Elimina los paréntesis.
Paso 14.3.2.2
Simplifica cada término.
Paso 14.3.2.2.1
Eleva a la potencia de .
Paso 14.3.2.2.2
Eleva a la potencia de .
Paso 14.3.2.2.3
Multiplica por .
Paso 14.3.2.3
Simplifica mediante suma y resta.
Paso 14.3.2.3.1
Resta de .
Paso 14.3.2.3.2
Suma y .
Paso 14.3.2.4
La respuesta final es .
Paso 14.4
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 14.4.1
Reemplaza la variable con en la expresión.
Paso 14.4.2
Simplifica el resultado.
Paso 14.4.2.1
Elimina los paréntesis.
Paso 14.4.2.2
Simplifica cada término.
Paso 14.4.2.2.1
Eleva a la potencia de .
Paso 14.4.2.2.2
Eleva a la potencia de .
Paso 14.4.2.2.3
Multiplica por .
Paso 14.4.2.3
Simplifica mediante suma y resta.
Paso 14.4.2.3.1
Resta de .
Paso 14.4.2.3.2
Suma y .
Paso 14.4.2.4
La respuesta final es .
Paso 14.5
Como la primera derivada cambió los signos de negativo a positivo alrededor de , es un mínimo local.
es un mínimo local
Paso 14.6
Como la primera derivada no cambió los signos alrededor de , no es un máximo local ni un mínimo local.
No es un máximo local ni un mínimo local
Paso 14.7
Estos son los extremos locales de .
es un mínimo local
es un mínimo local
Paso 15