Ingresa un problema...
Cálculo Ejemplos
Paso 1
Reescribe la ecuación como .
Paso 2
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
Elimina los paréntesis.
Paso 2.3
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Cancela el factor común de .
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Reescribe la expresión.
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Aplica la propiedad distributiva.
Paso 3.3.2
Simplifica.
Paso 3.3.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.2.2
Mueve a la izquierda de .
Paso 4
Paso 4.1
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 4.2
Resta de ambos lados de la ecuación.
Paso 4.3
Suma a ambos lados de la ecuación.
Paso 4.4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 4.5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 4.6
Simplifica el numerador.
Paso 4.6.1
Aplica la propiedad distributiva.
Paso 4.6.2
Multiplica por .
Paso 4.6.3
Multiplica por .
Paso 4.6.4
Reescribe como .
Paso 4.6.5
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 4.6.5.1
Aplica la propiedad distributiva.
Paso 4.6.5.2
Aplica la propiedad distributiva.
Paso 4.6.5.3
Aplica la propiedad distributiva.
Paso 4.6.6
Simplifica y combina los términos similares.
Paso 4.6.6.1
Simplifica cada término.
Paso 4.6.6.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.6.6.1.2
Multiplica por sumando los exponentes.
Paso 4.6.6.1.2.1
Mueve .
Paso 4.6.6.1.2.2
Multiplica por .
Paso 4.6.6.1.3
Multiplica por .
Paso 4.6.6.1.4
Multiplica por .
Paso 4.6.6.1.5
Multiplica por .
Paso 4.6.6.1.6
Multiplica por .
Paso 4.6.6.2
Suma y .
Paso 4.6.7
Aplica la propiedad distributiva.
Paso 4.6.8
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.6.9
Multiplica por .
Paso 4.6.10
Simplifica cada término.
Paso 4.6.10.1
Multiplica por sumando los exponentes.
Paso 4.6.10.1.1
Mueve .
Paso 4.6.10.1.2
Multiplica por .
Paso 4.6.10.2
Multiplica por .
Paso 4.6.11
Resta de .
Paso 4.6.12
Resta de .
Paso 4.6.13
Factoriza por agrupación.
Paso 4.6.13.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 4.6.13.1.1
Factoriza de .
Paso 4.6.13.1.2
Reescribe como más
Paso 4.6.13.1.3
Aplica la propiedad distributiva.
Paso 4.6.13.2
Factoriza el máximo común divisor de cada grupo.
Paso 4.6.13.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.6.13.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.6.13.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.7
Cambia a .
Paso 4.8
Simplifica la expresión para obtener el valor de la parte de .
Paso 4.8.1
Simplifica el numerador.
Paso 4.8.1.1
Aplica la propiedad distributiva.
Paso 4.8.1.2
Multiplica por .
Paso 4.8.1.3
Multiplica por .
Paso 4.8.1.4
Reescribe como .
Paso 4.8.1.5
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 4.8.1.5.1
Aplica la propiedad distributiva.
Paso 4.8.1.5.2
Aplica la propiedad distributiva.
Paso 4.8.1.5.3
Aplica la propiedad distributiva.
Paso 4.8.1.6
Simplifica y combina los términos similares.
Paso 4.8.1.6.1
Simplifica cada término.
Paso 4.8.1.6.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.8.1.6.1.2
Multiplica por sumando los exponentes.
Paso 4.8.1.6.1.2.1
Mueve .
Paso 4.8.1.6.1.2.2
Multiplica por .
Paso 4.8.1.6.1.3
Multiplica por .
Paso 4.8.1.6.1.4
Multiplica por .
Paso 4.8.1.6.1.5
Multiplica por .
Paso 4.8.1.6.1.6
Multiplica por .
Paso 4.8.1.6.2
Suma y .
Paso 4.8.1.7
Aplica la propiedad distributiva.
Paso 4.8.1.8
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.8.1.9
Multiplica por .
Paso 4.8.1.10
Simplifica cada término.
Paso 4.8.1.10.1
Multiplica por sumando los exponentes.
Paso 4.8.1.10.1.1
Mueve .
Paso 4.8.1.10.1.2
Multiplica por .
Paso 4.8.1.10.2
Multiplica por .
Paso 4.8.1.11
Resta de .
Paso 4.8.1.12
Resta de .
Paso 4.8.1.13
Factoriza por agrupación.
Paso 4.8.1.13.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 4.8.1.13.1.1
Factoriza de .
Paso 4.8.1.13.1.2
Reescribe como más
Paso 4.8.1.13.1.3
Aplica la propiedad distributiva.
Paso 4.8.1.13.2
Factoriza el máximo común divisor de cada grupo.
Paso 4.8.1.13.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.8.1.13.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.8.1.13.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4.8.2
Cambia a .
Paso 4.9
La respuesta final es la combinación de ambas soluciones.
Paso 5
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 6
Paso 6.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.2
Establece igual a y resuelve .
Paso 6.2.1
Establece igual a .
Paso 6.2.2
Resuelve en .
Paso 6.2.2.1
Suma a ambos lados de la ecuación.
Paso 6.2.2.2
Divide cada término en por y simplifica.
Paso 6.2.2.2.1
Divide cada término en por .
Paso 6.2.2.2.2
Simplifica el lado izquierdo.
Paso 6.2.2.2.2.1
Cancela el factor común de .
Paso 6.2.2.2.2.1.1
Cancela el factor común.
Paso 6.2.2.2.2.1.2
Divide por .
Paso 6.2.2.2.3
Simplifica el lado derecho.
Paso 6.2.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 6.3
Establece igual a y resuelve .
Paso 6.3.1
Establece igual a .
Paso 6.3.2
Suma a ambos lados de la ecuación.
Paso 6.4
La solución final comprende todos los valores que hacen verdadera.
Paso 6.5
Usa cada raíz para crear intervalos de prueba.
Paso 6.6
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Paso 6.6.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 6.6.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 6.6.1.2
Reemplaza con en la desigualdad original.
Paso 6.6.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 6.6.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 6.6.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 6.6.2.2
Reemplaza con en la desigualdad original.
Paso 6.6.2.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 6.6.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 6.6.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 6.6.3.2
Reemplaza con en la desigualdad original.
Paso 6.6.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 6.6.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 6.7
La solución consiste en todos los intervalos verdaderos.
Paso 7
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 8
Paso 8.1
Divide cada término en por .
Paso 8.2
Simplifica el lado izquierdo.
Paso 8.2.1
Cancela el factor común de .
Paso 8.2.1.1
Cancela el factor común.
Paso 8.2.1.2
Divide por .
Paso 8.3
Simplifica el lado derecho.
Paso 8.3.1
Divide por .
Paso 9
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 10
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 11
Determina el dominio y el rango.
Dominio:
Rango:
Paso 12