Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Multiplica por .
Paso 1.4
Simplifica.
Paso 1.4.1
Reordena los términos.
Paso 1.4.2
Reordena los factores en .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3.3
Reemplaza todos los casos de con .
Paso 2.2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.7
Multiplica por .
Paso 2.2.8
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.1.3
Reemplaza todos los casos de con .
Paso 2.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Combina los términos.
Paso 2.4.2.1
Eleva a la potencia de .
Paso 2.4.2.2
Eleva a la potencia de .
Paso 2.4.2.3
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.2.4
Suma y .
Paso 2.4.2.5
Suma y .
Paso 2.4.2.5.1
Reordena y .
Paso 2.4.2.5.2
Suma y .
Paso 2.4.3
Reordena los términos.
Paso 2.4.4
Reordena los factores en .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4.1.2.3
Reemplaza todos los casos de con .
Paso 4.1.3
Diferencia.
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Multiplica por .
Paso 4.1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.5
Multiplica por .
Paso 4.1.4
Simplifica.
Paso 4.1.4.1
Reordena los términos.
Paso 4.1.4.2
Reordena los factores en .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza de .
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Multiplica por .
Paso 5.2.3
Factoriza de .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a y resuelve .
Paso 5.4.1
Establece igual a .
Paso 5.4.2
Resuelve en .
Paso 5.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 5.4.2.2
Expande el lado izquierdo.
Paso 5.4.2.2.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 5.4.2.2.2
El logaritmo natural de es .
Paso 5.4.2.2.3
Multiplica por .
Paso 5.4.2.3
Simplifica el lado derecho.
Paso 5.4.2.3.1
La ecuación no puede resolverse porque es indefinida.
Paso 5.4.2.4
Divide cada término en por y simplifica.
Paso 5.4.2.4.1
Divide cada término en por .
Paso 5.4.2.4.2
Simplifica el lado izquierdo.
Paso 5.4.2.4.2.1
Cancela el factor común de .
Paso 5.4.2.4.2.1.1
Cancela el factor común.
Paso 5.4.2.4.2.1.2
Divide por .
Paso 5.5
Establece igual a y resuelve .
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resuelve en .
Paso 5.5.2.1
Resta de ambos lados de la ecuación.
Paso 5.5.2.2
Divide cada término en por y simplifica.
Paso 5.5.2.2.1
Divide cada término en por .
Paso 5.5.2.2.2
Simplifica el lado izquierdo.
Paso 5.5.2.2.2.1
Cancela el factor común de .
Paso 5.5.2.2.2.1.1
Cancela el factor común.
Paso 5.5.2.2.2.1.2
Divide por .
Paso 5.5.2.2.3
Simplifica el lado derecho.
Paso 5.5.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Paso 9.1
Simplifica cada término.
Paso 9.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 9.1.2
Cancela el factor común de .
Paso 9.1.2.1
Factoriza de .
Paso 9.1.2.2
Cancela el factor común.
Paso 9.1.2.3
Reescribe la expresión.
Paso 9.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 9.1.4
Cancela el factor común de .
Paso 9.1.4.1
Factoriza de .
Paso 9.1.4.2
Cancela el factor común.
Paso 9.1.4.3
Reescribe la expresión.
Paso 9.1.5
Reescribe la expresión mediante la regla del exponente negativo .
Paso 9.1.6
Combina y .
Paso 9.1.7
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 9.1.8
Cancela el factor común de .
Paso 9.1.8.1
Factoriza de .
Paso 9.1.8.2
Cancela el factor común.
Paso 9.1.8.3
Reescribe la expresión.
Paso 9.1.9
Reescribe la expresión mediante la regla del exponente negativo .
Paso 9.1.10
Multiplica .
Paso 9.1.10.1
Combina y .
Paso 9.1.10.2
Combina y .
Paso 9.1.11
Mueve a la izquierda de .
Paso 9.2
Simplifica los términos.
Paso 9.2.1
Combina los numeradores sobre el denominador común.
Paso 9.2.2
Suma y .
Paso 10
Paso 10.1
Divide en intervalos separados alrededor de los valores de que hacen que la primera derivada sea o indefinida.
Paso 10.2
Sustituye cualquier número, como , del intervalo en la primera derivada para comprobar si el resultado es negativo o positivo.
Paso 10.2.1
Reemplaza la variable con en la expresión.
Paso 10.2.2
Simplifica el resultado.
Paso 10.2.2.1
Simplifica cada término.
Paso 10.2.2.1.1
Multiplica por .
Paso 10.2.2.1.2
Multiplica por .
Paso 10.2.2.1.3
Cualquier valor elevado a es .
Paso 10.2.2.1.4
Multiplica por .
Paso 10.2.2.1.5
Multiplica por .
Paso 10.2.2.1.6
Cualquier valor elevado a es .
Paso 10.2.2.2
Suma y .
Paso 10.2.2.3
La respuesta final es .
Paso 10.3
No se obtuvieron máximos ni mínimos locales para .
No hay máximos ni mínimos locales
No hay máximos ni mínimos locales
Paso 11