Cálculo Ejemplos

Hallar los máximos y mínimos locales f(x)=xe^(x+y)
Paso 1
Obtén la primera derivada de la función.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Toca para ver más pasos...
Paso 1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 1.3.4.1
Suma y .
Paso 1.3.4.2
Multiplica por .
Paso 1.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.6
Multiplica por .
Paso 2
Obtén la segunda derivada de la función.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.2.3
Reemplaza todos los casos de con .
Paso 2.2.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.7
Suma y .
Paso 2.2.8
Multiplica por .
Paso 2.2.9
Multiplica por .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.1.3
Reemplaza todos los casos de con .
Paso 2.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.5
Suma y .
Paso 2.3.6
Multiplica por .
Paso 2.4
Simplifica.
Toca para ver más pasos...
Paso 2.4.1
Suma y .
Paso 2.4.2
Reordena los términos.
Paso 2.4.3
Reordena los factores en .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 4.1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 4.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 4.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 4.1.2.3
Reemplaza todos los casos de con .
Paso 4.1.3
Diferencia.
Toca para ver más pasos...
Paso 4.1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.4
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.1.3.4.1
Suma y .
Paso 4.1.3.4.2
Multiplica por .
Paso 4.1.3.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.6
Multiplica por .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Establece la primera derivada igual a , luego resuelve la ecuación .
Toca para ver más pasos...
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza de .
Toca para ver más pasos...
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Multiplica por .
Paso 5.2.3
Factoriza de .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.4.1
Establece igual a .
Paso 5.4.2
Resuelve en .
Toca para ver más pasos...
Paso 5.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 5.4.2.2
Expande el lado izquierdo.
Toca para ver más pasos...
Paso 5.4.2.2.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 5.4.2.2.2
El logaritmo natural de es .
Paso 5.4.2.2.3
Multiplica por .
Paso 5.4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.4.2.3.1
La ecuación no puede resolverse porque es indefinida.
Paso 5.4.2.4
Resta de ambos lados de la ecuación.
Paso 5.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resta de ambos lados de la ecuación.
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Obtén los valores en el lugar donde la derivada es indefinida.
Toca para ver más pasos...
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Evalúa la segunda derivada.
Toca para ver más pasos...
Paso 9.1
Reescribe como .
Paso 9.2
Suma y .
Paso 10
Como la prueba de la primera derivada falló, no hay extremos locales.
No hay extremos locales
Paso 11