Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Factoriza de .
Paso 1.2
Factoriza de .
Paso 1.3
Factoriza de .
Paso 1.4
Cancela los factores comunes.
Paso 1.4.1
Factoriza de .
Paso 1.4.2
Factoriza de .
Paso 1.4.3
Factoriza de .
Paso 1.4.4
Cancela el factor común.
Paso 1.4.5
Reescribe la expresión.
Paso 2
Paso 2.1
Evalúa el límite del numerador y el límite del denominador.
Paso 2.1.1
Resta el límite del numerador y el límite del denominador.
Paso 2.1.2
Evalúa el límite del numerador.
Paso 2.1.2.1
Evalúa el límite.
Paso 2.1.2.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.2.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.1.2.1.3
Mueve el límite dentro de la función trigonométrica porque el coseno es continuo.
Paso 2.1.2.1.4
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.2.1.5
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.3
Simplifica la respuesta.
Paso 2.1.2.3.1
Simplifica cada término.
Paso 2.1.2.3.1.1
Resta de .
Paso 2.1.2.3.1.2
El valor exacto de es .
Paso 2.1.2.3.1.3
Multiplica por .
Paso 2.1.2.3.2
Resta de .
Paso 2.1.3
Evalúa el límite del denominador.
Paso 2.1.3.1
Evalúa el límite.
Paso 2.1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.3.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.1.3.1.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.3
Resta de .
Paso 2.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 2.3
Obtén la derivada del numerador y el denominador.
Paso 2.3.1
Diferencia el numerador y el denominador.
Paso 2.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4
Evalúa .
Paso 2.3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.4.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.4.2.2
La derivada de con respecto a es .
Paso 2.3.4.2.3
Reemplaza todos los casos de con .
Paso 2.3.4.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4.6
Suma y .
Paso 2.3.4.7
Multiplica por .
Paso 2.3.4.8
Multiplica por .
Paso 2.3.4.9
Multiplica por .
Paso 2.3.5
Suma y .
Paso 2.3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.7
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.8
Evalúa .
Paso 2.3.8.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.8.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.8.3
Multiplica por .
Paso 2.3.9
Resta de .
Paso 3
Paso 3.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.2
Mueve el límite dentro de la función trigonométrica porque el seno es continuo.
Paso 3.3
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.4
Evalúa el límite de que es constante cuando se acerca a .
Paso 4
Evalúa el límite de mediante el ingreso de para .
Paso 5
Paso 5.1
Mueve el negativo al frente de la fracción.
Paso 5.2
Resta de .
Paso 5.3
El valor exacto de es .
Paso 5.4
Multiplica .
Paso 5.4.1
Multiplica por .
Paso 5.4.2
Multiplica por .