Cálculo Ejemplos

Evalúe el Límite limite a medida que x se aproxima a pi de (tan(x)^2)/(1+sec(x))
Paso 1
Aplica la regla de l'Hôpital
Toca para ver más pasos...
Paso 1.1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.1.2.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.1.2.1.1
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.1.2.1.2
Mueve el límite dentro de la función trigonométrica porque la tangente es continua.
Paso 1.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.1.2.3.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la tangente es negativa en el segundo cuadrante.
Paso 1.1.2.3.2
El valor exacto de es .
Paso 1.1.2.3.3
Multiplica por .
Paso 1.1.2.3.4
Elevar a cualquier potencia positiva da como resultado .
Paso 1.1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.1.3.1.2
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.1.3.1.3
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 1.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.1.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.1.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.3.3.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la secante es negativa en el segundo cuadrante.
Paso 1.1.3.3.1.2
El valor exacto de es .
Paso 1.1.3.3.1.3
Multiplica por .
Paso 1.1.3.3.2
Resta de .
Paso 1.1.3.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 1.3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 1.3.1
Diferencia el numerador y el denominador.
Paso 1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.2.3
Reemplaza todos los casos de con .
Paso 1.3.3
La derivada de con respecto a es .
Paso 1.3.4
Reordena los factores de .
Paso 1.3.5
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.7
La derivada de con respecto a es .
Paso 1.3.8
Suma y .
Paso 1.4
Reduce.
Toca para ver más pasos...
Paso 1.4.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.4.1.1
Factoriza de .
Paso 1.4.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.4.1.2.1
Factoriza de .
Paso 1.4.1.2.2
Cancela el factor común.
Paso 1.4.1.2.3
Reescribe la expresión.
Paso 1.4.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.2.1
Cancela el factor común.
Paso 1.4.2.2
Divide por .
Paso 2
Evalúa el límite.
Toca para ver más pasos...
Paso 2.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.2
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 3
Evalúa el límite de mediante el ingreso de para .
Paso 4
Simplifica la respuesta.
Toca para ver más pasos...
Paso 4.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la secante es negativa en el segundo cuadrante.
Paso 4.2
El valor exacto de es .
Paso 4.3
Multiplica .
Toca para ver más pasos...
Paso 4.3.1
Multiplica por .
Paso 4.3.2
Multiplica por .