Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.4
Combina y .
Paso 1.2.5
Combina los numeradores sobre el denominador común.
Paso 1.2.6
Simplifica el numerador.
Paso 1.2.6.1
Multiplica por .
Paso 1.2.6.2
Resta de .
Paso 1.2.7
Combina y .
Paso 1.2.8
Combina y .
Paso 1.2.9
Multiplica por .
Paso 1.2.10
Factoriza de .
Paso 1.2.11
Cancela los factores comunes.
Paso 1.2.11.1
Factoriza de .
Paso 1.2.11.2
Cancela el factor común.
Paso 1.2.11.3
Reescribe la expresión.
Paso 1.2.11.4
Divide por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Reordena los términos.
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3.4
Combina y .
Paso 2.3.5
Combina los numeradores sobre el denominador común.
Paso 2.3.6
Simplifica el numerador.
Paso 2.3.6.1
Multiplica por .
Paso 2.3.6.2
Resta de .
Paso 2.3.7
Combina y .
Paso 2.3.8
Combina y .
Paso 2.3.9
Multiplica por .
Paso 2.3.10
Factoriza de .
Paso 2.3.11
Cancela los factores comunes.
Paso 2.3.11.1
Factoriza de .
Paso 2.3.11.2
Cancela el factor común.
Paso 2.3.11.3
Reescribe la expresión.
Paso 2.3.11.4
Divide por .
Paso 2.4
Reordena los términos.
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.2.4
Combina y .
Paso 3.2.5
Combina los numeradores sobre el denominador común.
Paso 3.2.6
Simplifica el numerador.
Paso 3.2.6.1
Multiplica por .
Paso 3.2.6.2
Resta de .
Paso 3.2.7
Combina y .
Paso 3.2.8
Combina y .
Paso 3.2.9
Multiplica por .
Paso 3.3
Diferencia con la regla de la constante.
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Suma y .
Paso 4
Paso 4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.4
Combina y .
Paso 4.5
Combina los numeradores sobre el denominador común.
Paso 4.6
Simplifica el numerador.
Paso 4.6.1
Multiplica por .
Paso 4.6.2
Resta de .
Paso 4.7
Mueve el negativo al frente de la fracción.
Paso 4.8
Combina y .
Paso 4.9
Multiplica por .
Paso 4.10
Multiplica.
Paso 4.10.1
Multiplica por .
Paso 4.10.2
Mueve al denominador mediante la regla del exponente negativo .