Cálculo Ejemplos

أوجد المشتق 2nd g(x)=6(5-x)^7
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Toca para ver más pasos...
Paso 1.3.1
Multiplica por .
Paso 1.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Suma y .
Paso 1.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.6
Multiplica por .
Paso 1.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.8
Multiplica por .
Paso 2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Diferencia.
Toca para ver más pasos...
Paso 2.3.1
Multiplica por .
Paso 2.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4
Suma y .
Paso 2.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.6
Multiplica por .
Paso 2.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.8
Multiplica por .
Paso 3
Obtén la tercera derivada.
Toca para ver más pasos...
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3
Reemplaza todos los casos de con .
Paso 3.3
Diferencia.
Toca para ver más pasos...
Paso 3.3.1
Multiplica por .
Paso 3.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.4
Suma y .
Paso 3.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.6
Multiplica por .
Paso 3.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.8
Multiplica por .
Paso 4
Obtén la cuarta derivada.
Toca para ver más pasos...
Paso 4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 4.2.1
Para aplicar la regla de la cadena, establece como .
Paso 4.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.3
Reemplaza todos los casos de con .
Paso 4.3
Diferencia.
Toca para ver más pasos...
Paso 4.3.1
Multiplica por .
Paso 4.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.4
Suma y .
Paso 4.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.6
Multiplica por .
Paso 4.3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.8
Multiplica por .
Paso 5
La cuarta derivada de con respecto a es .