Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Descompone la fracción y multiplica por el denominador común.
Paso 1.1.1
Factoriza de .
Paso 1.1.1.1
Factoriza de .
Paso 1.1.1.2
Factoriza de .
Paso 1.1.1.3
Factoriza de .
Paso 1.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor es de segundo orden, se requieren términos en el numerador. El número de términos requeridos en el numerador siempre es igual al orden del factor en el denominador.
Paso 1.1.3
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 1.1.4
Cancela el factor común de .
Paso 1.1.4.1
Cancela el factor común.
Paso 1.1.4.2
Reescribe la expresión.
Paso 1.1.5
Cancela el factor común de .
Paso 1.1.5.1
Cancela el factor común.
Paso 1.1.5.2
Divide por .
Paso 1.1.6
Simplifica cada término.
Paso 1.1.6.1
Cancela el factor común de .
Paso 1.1.6.1.1
Cancela el factor común.
Paso 1.1.6.1.2
Divide por .
Paso 1.1.6.2
Aplica la propiedad distributiva.
Paso 1.1.6.3
Mueve a la izquierda de .
Paso 1.1.6.4
Cancela el factor común de .
Paso 1.1.6.4.1
Cancela el factor común.
Paso 1.1.6.4.2
Divide por .
Paso 1.1.6.5
Aplica la propiedad distributiva.
Paso 1.1.6.6
Multiplica por sumando los exponentes.
Paso 1.1.6.6.1
Mueve .
Paso 1.1.6.6.2
Multiplica por .
Paso 1.1.7
Mueve .
Paso 1.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Paso 1.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.3
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.4
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 1.3
Resuelve el sistema de ecuaciones.
Paso 1.3.1
Reescribe la ecuación como .
Paso 1.3.2
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.2.1
Reescribe la ecuación como .
Paso 1.3.2.2
Divide cada término en por y simplifica.
Paso 1.3.2.2.1
Divide cada término en por .
Paso 1.3.2.2.2
Simplifica el lado izquierdo.
Paso 1.3.2.2.2.1
Cancela el factor común de .
Paso 1.3.2.2.2.1.1
Cancela el factor común.
Paso 1.3.2.2.2.1.2
Divide por .
Paso 1.3.2.2.3
Simplifica el lado derecho.
Paso 1.3.2.2.3.1
Divide por .
Paso 1.3.3
Reemplaza todos los casos de por en cada ecuación.
Paso 1.3.3.1
Reemplaza todos los casos de en por .
Paso 1.3.3.2
Simplifica el lado derecho.
Paso 1.3.3.2.1
Elimina los paréntesis.
Paso 1.3.4
Resuelve en .
Paso 1.3.4.1
Reescribe la ecuación como .
Paso 1.3.4.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 1.3.4.2.1
Resta de ambos lados de la ecuación.
Paso 1.3.4.2.2
Resta de .
Paso 1.3.5
Resuelve el sistema de ecuaciones.
Paso 1.3.6
Enumera todas las soluciones.
Paso 1.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para , y .
Paso 1.5
Simplifica.
Paso 1.5.1
Elimina los paréntesis.
Paso 1.5.2
Factoriza de .
Paso 1.5.3
Reescribe como .
Paso 1.5.4
Factoriza de .
Paso 1.5.5
Mueve el negativo al frente de la fracción.
Paso 2
Divide la única integral en varias integrales.
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
La integral de con respecto a es .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Divide la fracción en dos fracciones.
Paso 7
Divide la única integral en varias integrales.
Paso 8
Paso 8.1
Deja . Obtén .
Paso 8.1.1
Diferencia .
Paso 8.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.1.5
Suma y .
Paso 8.2
Reescribe el problema mediante y .
Paso 9
Paso 9.1
Multiplica por .
Paso 9.2
Mueve a la izquierda de .
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
La integral de con respecto a es .
Paso 12
Reordena y .
Paso 13
Reescribe como .
Paso 14
La integral de con respecto a es .
Paso 15
Paso 15.1
Combina y .
Paso 15.2
Simplifica.
Paso 16
Reemplaza todos los casos de con .
Paso 17
Paso 17.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 17.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 17.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 17.3.1
Multiplica por .
Paso 17.3.2
Multiplica por .
Paso 17.3.3
Multiplica por .
Paso 17.3.4
Multiplica por .
Paso 17.4
Combina los numeradores sobre el denominador común.
Paso 17.5
Simplifica el numerador.
Paso 17.5.1
Mueve a la izquierda de .
Paso 17.5.2
Mueve a la izquierda de .
Paso 18
Reordena los términos.