Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.2
La derivada de con respecto a es .
Paso 1.2.3
Reemplaza todos los casos de con .
Paso 1.3
Diferencia.
Paso 1.3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.3
Suma y .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Multiplica por .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Diferencia.
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
Evalúa .
Paso 2.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.1.2
La derivada de con respecto a es .
Paso 2.3.1.3
Reemplaza todos los casos de con .
Paso 2.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.5
Suma y .
Paso 2.3.6
Multiplica por .
Paso 2.4
Combina los términos.
Paso 2.4.1
Suma y .
Paso 2.4.2
Resta de .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 4
Establece igual a la integral de .
Paso 5
Paso 5.1
Sea . Entonces . Reescribe mediante y .
Paso 5.1.1
Deja . Obtén .
Paso 5.1.1.1
Diferencia .
Paso 5.1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 5.1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.1.5
Suma y .
Paso 5.1.2
Reescribe el problema mediante y .
Paso 5.2
La integral de con respecto a es .
Paso 5.3
Reemplaza todos los casos de con .
Paso 6
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 7
Establece .
Paso 8
Paso 8.1
Diferencia con respecto a .
Paso 8.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3
Evalúa .
Paso 8.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 8.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 8.3.1.2
La derivada de con respecto a es .
Paso 8.3.1.3
Reemplaza todos los casos de con .
Paso 8.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.3.5
Suma y .
Paso 8.3.6
Multiplica por .
Paso 8.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 8.5
Reordena los términos.
Paso 9
Paso 9.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 9.1.1
Resta de ambos lados de la ecuación.
Paso 9.1.2
Combina los términos opuestos en .
Paso 9.1.2.1
Resta de .
Paso 9.1.2.2
Suma y .
Paso 10
Paso 10.1
Integra ambos lados de .
Paso 10.2
Evalúa .
Paso 10.3
Divide la única integral en varias integrales.
Paso 10.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 10.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10.7
Según la regla de la potencia, la integral de con respecto a es .
Paso 10.8
Simplifica.
Paso 10.9
Simplifica.
Paso 10.9.1
Combina y .
Paso 10.9.2
Cancela el factor común de .
Paso 10.9.2.1
Cancela el factor común.
Paso 10.9.2.2
Reescribe la expresión.
Paso 10.9.3
Multiplica por .
Paso 10.9.4
Combina y .
Paso 10.9.5
Cancela el factor común de .
Paso 10.9.5.1
Cancela el factor común.
Paso 10.9.5.2
Reescribe la expresión.
Paso 10.9.6
Multiplica por .
Paso 11
Sustituye por en .