Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Resuelve
Paso 1.1.1
Simplifica cada término.
Paso 1.1.1.1
Aplica la propiedad distributiva.
Paso 1.1.1.2
Multiplica por .
Paso 1.1.2
Resta de ambos lados de la ecuación.
Paso 1.1.3
Factoriza de .
Paso 1.1.3.1
Factoriza de .
Paso 1.1.3.2
Factoriza de .
Paso 1.1.3.3
Factoriza de .
Paso 1.1.4
Divide cada término en por y simplifica.
Paso 1.1.4.1
Divide cada término en por .
Paso 1.1.4.2
Simplifica el lado izquierdo.
Paso 1.1.4.2.1
Cancela el factor común de .
Paso 1.1.4.2.1.1
Cancela el factor común.
Paso 1.1.4.2.1.2
Divide por .
Paso 1.1.4.3
Simplifica el lado derecho.
Paso 1.1.4.3.1
Mueve el negativo al frente de la fracción.
Paso 1.2
Reagrupa los factores.
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Paso 1.4.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.4.2
Cancela el factor común de .
Paso 1.4.2.1
Mueve el signo menos inicial en al numerador.
Paso 1.4.2.2
Factoriza de .
Paso 1.4.2.3
Cancela el factor común.
Paso 1.4.2.4
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Multiplica por .
Paso 2.3.4
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.3.4.1
Deja . Obtén .
Paso 2.3.4.1.1
Diferencia .
Paso 2.3.4.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.4.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4.1.5
Suma y .
Paso 2.3.4.2
Reescribe el problema mediante y .
Paso 2.3.5
Simplifica.
Paso 2.3.5.1
Multiplica por .
Paso 2.3.5.2
Mueve a la izquierda de .
Paso 2.3.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.7
Simplifica.
Paso 2.3.7.1
Combina y .
Paso 2.3.7.2
Cancela el factor común de y .
Paso 2.3.7.2.1
Factoriza de .
Paso 2.3.7.2.2
Cancela los factores comunes.
Paso 2.3.7.2.2.1
Factoriza de .
Paso 2.3.7.2.2.2
Cancela el factor común.
Paso 2.3.7.2.2.3
Reescribe la expresión.
Paso 2.3.7.2.2.4
Divide por .
Paso 2.3.8
La integral de con respecto a es .
Paso 2.3.9
Simplifica.
Paso 2.3.10
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.2
Usa las propiedades de los logaritmos del producto, .
Paso 3.3
Para multiplicar valores absolutos, multiplica los términos dentro de cada valor absoluto.
Paso 3.4
Aplica la propiedad distributiva.
Paso 3.5
Multiplica por .
Paso 3.6
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.7
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.8
Resuelve
Paso 3.8.1
Reescribe la ecuación como .
Paso 3.8.2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3.8.3
Factoriza de .
Paso 3.8.3.1
Factoriza de .
Paso 3.8.3.2
Factoriza de .
Paso 3.8.3.3
Factoriza de .
Paso 3.8.4
Divide cada término en por y simplifica.
Paso 3.8.4.1
Divide cada término en por .
Paso 3.8.4.2
Simplifica el lado izquierdo.
Paso 3.8.4.2.1
Cancela el factor común de .
Paso 3.8.4.2.1.1
Cancela el factor común.
Paso 3.8.4.2.1.2
Divide por .
Paso 4
Simplifica la constante de integración.
Paso 5
Usa la condición inicial para obtener el valor de mediante la sustitución de por y de por en .
Paso 6
Paso 6.1
Reescribe la ecuación como .
Paso 6.2
Multiplica ambos lados de la ecuación por .
Paso 6.3
Simplifica ambos lados de la ecuación.
Paso 6.3.1
Simplifica el lado izquierdo.
Paso 6.3.1.1
Simplifica .
Paso 6.3.1.1.1
Simplifica el denominador.
Paso 6.3.1.1.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.1.1.1.2
Suma y .
Paso 6.3.1.1.2
Simplifica la expresión.
Paso 6.3.1.1.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.1.1.2.2
Suma y .
Paso 6.3.1.1.2.3
Multiplica por .
Paso 6.3.1.1.2.4
Divide por .
Paso 6.3.2
Simplifica el lado derecho.
Paso 6.3.2.1
Simplifica .
Paso 6.3.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.2.1.2
Suma y .
Paso 6.3.2.1.3
Multiplica por .
Paso 7
Paso 7.1
Sustituye por .