Cálculo Ejemplos

Resuelve la Ecuación Diferencial 2xy+(1+x^2)(dy)/(dx)=0 , y(0)=1
,
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Resuelve
Toca para ver más pasos...
Paso 1.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.1.1
Aplica la propiedad distributiva.
Paso 1.1.1.2
Multiplica por .
Paso 1.1.2
Resta de ambos lados de la ecuación.
Paso 1.1.3
Factoriza de .
Toca para ver más pasos...
Paso 1.1.3.1
Factoriza de .
Paso 1.1.3.2
Factoriza de .
Paso 1.1.3.3
Factoriza de .
Paso 1.1.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.4.1
Divide cada término en por .
Paso 1.1.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.4.2.1.1
Cancela el factor común.
Paso 1.1.4.2.1.2
Divide por .
Paso 1.1.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.1.4.3.1
Mueve el negativo al frente de la fracción.
Paso 1.2
Reagrupa los factores.
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.4.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.2.1
Mueve el signo menos inicial en al numerador.
Paso 1.4.2.2
Factoriza de .
Paso 1.4.2.3
Cancela el factor común.
Paso 1.4.2.4
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Multiplica por .
Paso 2.3.4
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.3.4.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.3.4.1.1
Diferencia .
Paso 2.3.4.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.4.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.4.1.5
Suma y .
Paso 2.3.4.2
Reescribe el problema mediante y .
Paso 2.3.5
Simplifica.
Toca para ver más pasos...
Paso 2.3.5.1
Multiplica por .
Paso 2.3.5.2
Mueve a la izquierda de .
Paso 2.3.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.7
Simplifica.
Toca para ver más pasos...
Paso 2.3.7.1
Combina y .
Paso 2.3.7.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.3.7.2.1
Factoriza de .
Paso 2.3.7.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.3.7.2.2.1
Factoriza de .
Paso 2.3.7.2.2.2
Cancela el factor común.
Paso 2.3.7.2.2.3
Reescribe la expresión.
Paso 2.3.7.2.2.4
Divide por .
Paso 2.3.8
La integral de con respecto a es .
Paso 2.3.9
Simplifica.
Paso 2.3.10
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.2
Usa las propiedades de los logaritmos del producto, .
Paso 3.3
Para multiplicar valores absolutos, multiplica los términos dentro de cada valor absoluto.
Paso 3.4
Aplica la propiedad distributiva.
Paso 3.5
Multiplica por .
Paso 3.6
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.7
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.8
Resuelve
Toca para ver más pasos...
Paso 3.8.1
Reescribe la ecuación como .
Paso 3.8.2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3.8.3
Factoriza de .
Toca para ver más pasos...
Paso 3.8.3.1
Factoriza de .
Paso 3.8.3.2
Factoriza de .
Paso 3.8.3.3
Factoriza de .
Paso 3.8.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.8.4.1
Divide cada término en por .
Paso 3.8.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.8.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.8.4.2.1.1
Cancela el factor común.
Paso 3.8.4.2.1.2
Divide por .
Paso 4
Simplifica la constante de integración.
Paso 5
Usa la condición inicial para obtener el valor de mediante la sustitución de por y de por en .
Paso 6
Resuelve
Toca para ver más pasos...
Paso 6.1
Reescribe la ecuación como .
Paso 6.2
Multiplica ambos lados de la ecuación por .
Paso 6.3
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 6.3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 6.3.1.1
Simplifica .
Toca para ver más pasos...
Paso 6.3.1.1.1
Simplifica el denominador.
Toca para ver más pasos...
Paso 6.3.1.1.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.1.1.1.2
Suma y .
Paso 6.3.1.1.2
Simplifica la expresión.
Toca para ver más pasos...
Paso 6.3.1.1.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.1.1.2.2
Suma y .
Paso 6.3.1.1.2.3
Multiplica por .
Paso 6.3.1.1.2.4
Divide por .
Paso 6.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 6.3.2.1
Simplifica .
Toca para ver más pasos...
Paso 6.3.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 6.3.2.1.2
Suma y .
Paso 6.3.2.1.3
Multiplica por .
Paso 7
Sustituye por en y simplifica.
Toca para ver más pasos...
Paso 7.1
Sustituye por .