Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Reescribe como .
Paso 1.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Paso 1.2.1
Aplica la propiedad distributiva.
Paso 1.2.2
Aplica la propiedad distributiva.
Paso 1.2.3
Aplica la propiedad distributiva.
Paso 1.3
Simplifica y combina los términos similares.
Paso 1.3.1
Simplifica cada término.
Paso 1.3.1.1
Multiplica por sumando los exponentes.
Paso 1.3.1.1.1
Usa la regla de la potencia para combinar exponentes.
Paso 1.3.1.1.2
Suma y .
Paso 1.3.1.2
Mueve a la izquierda de .
Paso 1.3.1.3
Multiplica por .
Paso 1.3.2
Resta de .
Paso 2
Divide la única integral en varias integrales.
Paso 3
Paso 3.1
Deja . Obtén .
Paso 3.1.1
Diferencia .
Paso 3.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.1.4
Multiplica por .
Paso 3.2
Reescribe el problema mediante y .
Paso 4
Combina y .
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
La integral de con respecto a es .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Paso 8.1
Deja . Obtén .
Paso 8.1.1
Diferencia .
Paso 8.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.1.4
Multiplica por .
Paso 8.2
Reescribe el problema mediante y .
Paso 9
Combina y .
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Paso 11.1
Combina y .
Paso 11.2
Mueve el negativo al frente de la fracción.
Paso 12
La integral de con respecto a es .
Paso 13
Aplica la regla de la constante.
Paso 14
Simplifica.
Paso 15
Paso 15.1
Reemplaza todos los casos de con .
Paso 15.2
Reemplaza todos los casos de con .