Álgebra Ejemplos

Convertir a notación de intervalo (3x)/(7-x)<x
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Simplifica .
Toca para ver más pasos...
Paso 2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2
Combina y .
Paso 2.3
Combina los numeradores sobre el denominador común.
Paso 2.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.4.1
Factoriza de .
Toca para ver más pasos...
Paso 2.4.1.1
Factoriza de .
Paso 2.4.1.2
Factoriza de .
Paso 2.4.1.3
Factoriza de .
Paso 2.4.2
Aplica la propiedad distributiva.
Paso 2.4.3
Multiplica por .
Paso 2.4.4
Multiplica .
Toca para ver más pasos...
Paso 2.4.4.1
Multiplica por .
Paso 2.4.4.2
Multiplica por .
Paso 2.4.5
Resta de .
Paso 2.5
Reescribe como .
Paso 2.6
Factoriza de .
Paso 2.7
Factoriza de .
Paso 2.8
Mueve el negativo al frente de la fracción.
Paso 3
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.1
Divide cada término en por .
Paso 4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 4.2.2
Divide por .
Paso 4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Divide por .
Paso 5
Resta de ambos lados de la ecuación.
Paso 6
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 6.1
Divide cada término en por .
Paso 6.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 6.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 6.2.2
Divide por .
Paso 6.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 6.3.1
Divide por .
Paso 7
Resta de ambos lados de la ecuación.
Paso 8
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 8.1
Divide cada término en por .
Paso 8.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 8.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 8.2.2
Divide por .
Paso 8.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 8.3.1
Divide por .
Paso 9
Resuelve cada factor para obtener los valores donde la expresión de valor absoluto va de positiva a negativa.
Paso 10
Consolida las soluciones.
Paso 11
Obtén el dominio de .
Toca para ver más pasos...
Paso 11.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 11.2
Resuelve
Toca para ver más pasos...
Paso 11.2.1
Resta de ambos lados de la ecuación.
Paso 11.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 11.2.2.1
Divide cada término en por .
Paso 11.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 11.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 11.2.2.2.2
Divide por .
Paso 11.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 11.2.2.3.1
Divide por .
Paso 11.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 12
Usa cada raíz para crear intervalos de prueba.
Paso 13
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 13.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 13.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 13.1.2
Reemplaza con en la desigualdad original.
Paso 13.1.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 13.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 13.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 13.2.2
Reemplaza con en la desigualdad original.
Paso 13.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 13.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 13.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 13.3.2
Reemplaza con en la desigualdad original.
Paso 13.3.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 13.4
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 13.4.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 13.4.2
Reemplaza con en la desigualdad original.
Paso 13.4.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 13.5
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Verdadero
Paso 14
La solución consiste en todos los intervalos verdaderos.
o
Paso 15
Convierte la desigualdad a notación de intervalo.
Paso 16