Ingresa un problema...
Álgebra Ejemplos
Paso 1
y son las dos soluciones reales distintas para la ecuación cuadrática, lo que significa que y son los factores de la ecuación cuadrática.
Paso 2
Paso 2.1
Aplica la propiedad distributiva.
Paso 2.2
Aplica la propiedad distributiva.
Paso 2.3
Aplica la propiedad distributiva.
Paso 3
Paso 3.1
Simplifica cada término.
Paso 3.1.1
Multiplica por .
Paso 3.1.2
Mueve a la izquierda de .
Paso 3.1.3
Combina y .
Paso 3.1.4
Cancela el factor común de .
Paso 3.1.4.1
Factoriza de .
Paso 3.1.4.2
Factoriza de .
Paso 3.1.4.3
Cancela el factor común.
Paso 3.1.4.4
Reescribe la expresión.
Paso 3.1.5
Combina y .
Paso 3.1.6
Multiplica por .
Paso 3.1.7
Mueve el negativo al frente de la fracción.
Paso 3.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.3
Combina y .
Paso 3.4
Combina los numeradores sobre el denominador común.
Paso 3.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.6
Combina y .
Paso 3.7
Combina los numeradores sobre el denominador común.
Paso 3.8
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.9
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 3.9.1
Multiplica por .
Paso 3.9.2
Multiplica por .
Paso 3.10
Combina los numeradores sobre el denominador común.
Paso 4
Paso 4.1
Mueve a la izquierda de .
Paso 4.2
Multiplica por .
Paso 4.3
Multiplica por .
Paso 4.4
Suma y .
Paso 4.5
Factoriza por agrupación.
Paso 4.5.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 4.5.1.1
Factoriza de .
Paso 4.5.1.2
Reescribe como más
Paso 4.5.1.3
Aplica la propiedad distributiva.
Paso 4.5.2
Factoriza el máximo común divisor de cada grupo.
Paso 4.5.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.5.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.5.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 5
Paso 5.1
Aplica la propiedad distributiva.
Paso 5.2
Aplica la propiedad distributiva.
Paso 5.3
Aplica la propiedad distributiva.
Paso 6
Paso 6.1
Simplifica cada término.
Paso 6.1.1
Multiplica por sumando los exponentes.
Paso 6.1.1.1
Mueve .
Paso 6.1.1.2
Multiplica por .
Paso 6.1.2
Multiplica por .
Paso 6.1.3
Multiplica por .
Paso 6.2
Suma y .
Paso 7
Divide la fracción en dos fracciones.
Paso 8
Divide la fracción en dos fracciones.
Paso 9
Paso 9.1
Cancela el factor común.
Paso 9.2
Divide por .
Paso 10
Mueve el negativo al frente de la fracción.
Paso 11
Paso 11.1
Factoriza de .
Paso 11.2
Cancela los factores comunes.
Paso 11.2.1
Factoriza de .
Paso 11.2.2
Cancela el factor común.
Paso 11.2.3
Reescribe la expresión.
Paso 12
Mueve el negativo al frente de la fracción.
Paso 13
La ecuación cuadrática estándar en función del conjunto dado de soluciones es .
Paso 14