Álgebra Ejemplos

أوجد المشتق باستخدام قاعدة الباقي- d/dm (2m^4+21m^3+35m^2-37m+45)/(2m+7)
Paso 1
Diferencia con la regla del cociente, que establece que es donde y .
Paso 2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3
Evalúa .
Toca para ver más pasos...
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3
Multiplica por .
Paso 4
Evalúa .
Toca para ver más pasos...
Paso 4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3
Multiplica por .
Paso 5
Evalúa .
Toca para ver más pasos...
Paso 5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.3
Multiplica por .
Paso 6
Evalúa .
Toca para ver más pasos...
Paso 6.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.3
Multiplica por .
Paso 7
Diferencia.
Toca para ver más pasos...
Paso 7.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.2
Suma y .
Paso 7.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 8
Evalúa .
Toca para ver más pasos...
Paso 8.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.3
Multiplica por .
Paso 9
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 9.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 9.2
Suma y .
Paso 10
Simplifica.
Toca para ver más pasos...
Paso 10.1
Aplica la propiedad distributiva.
Paso 10.2
Aplica la propiedad distributiva.
Paso 10.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 10.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 10.3.1.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 10.3.1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 10.3.1.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 10.3.1.2.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 10.3.1.2.2.1
Mueve .
Paso 10.3.1.2.2.2
Multiplica por .
Toca para ver más pasos...
Paso 10.3.1.2.2.2.1
Eleva a la potencia de .
Paso 10.3.1.2.2.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 10.3.1.2.2.3
Suma y .
Paso 10.3.1.2.3
Multiplica por .
Paso 10.3.1.2.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 10.3.1.2.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 10.3.1.2.5.1
Mueve .
Paso 10.3.1.2.5.2
Multiplica por .
Toca para ver más pasos...
Paso 10.3.1.2.5.2.1
Eleva a la potencia de .
Paso 10.3.1.2.5.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 10.3.1.2.5.3
Suma y .
Paso 10.3.1.2.6
Multiplica por .
Paso 10.3.1.2.7
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 10.3.1.2.8
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 10.3.1.2.8.1
Mueve .
Paso 10.3.1.2.8.2
Multiplica por .
Paso 10.3.1.2.9
Multiplica por .
Paso 10.3.1.2.10
Multiplica por .
Paso 10.3.1.2.11
Multiplica por .
Paso 10.3.1.2.12
Multiplica por .
Paso 10.3.1.2.13
Multiplica por .
Paso 10.3.1.2.14
Multiplica por .
Paso 10.3.1.3
Suma y .
Paso 10.3.1.4
Suma y .
Paso 10.3.1.5
Suma y .
Paso 10.3.1.6
Multiplica por .
Paso 10.3.1.7
Multiplica por .
Paso 10.3.1.8
Multiplica por .
Paso 10.3.1.9
Multiplica por .
Paso 10.3.1.10
Multiplica por .
Paso 10.3.1.11
Multiplica por .
Paso 10.3.1.12
Multiplica por .
Paso 10.3.1.13
Multiplica por .
Paso 10.3.1.14
Multiplica .
Toca para ver más pasos...
Paso 10.3.1.14.1
Multiplica por .
Paso 10.3.1.14.2
Multiplica por .
Paso 10.3.2
Resta de .
Paso 10.3.3
Resta de .
Paso 10.3.4
Resta de .
Paso 10.3.5
Suma y .
Paso 10.3.6
Resta de .