Álgebra Ejemplos

أوجد القيم المثلثية الأخرى في الربع III sin(x)=-3/5
Paso 1
Usa la definición de seno para obtener los lados conocidos del triángulo rectángulo del círculo unitario. El cuadrante determina el signo en cada uno de los valores.
Paso 2
Obtén el lado adyacente del triángulo del círculo unitario. Dado que se conocen la hipotenusa y los lados opuestos, usa el teorema de Pitágoras para encontrar el lado restante.
Paso 3
Reemplaza los valores conocidos en la ecuación.
Paso 4
Simplifica dentro del radical.
Toca para ver más pasos...
Paso 4.1
Haz que sea negativo.
Adyacente
Paso 4.2
Eleva a la potencia de .
Adyacente
Paso 4.3
Eleva a la potencia de .
Adyacente
Paso 4.4
Multiplica por .
Adyacente
Paso 4.5
Resta de .
Adyacente
Paso 4.6
Reescribe como .
Adyacente
Paso 4.7
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Adyacente
Paso 4.8
Multiplica por .
Adyacente
Adyacente
Paso 5
Mueve el negativo al frente de la fracción.
Paso 6
Obtén el valor del coseno.
Toca para ver más pasos...
Paso 6.1
Usa la definición de coseno para obtener el valor de .
Paso 6.2
Sustituye los valores conocidos.
Paso 6.3
Mueve el negativo al frente de la fracción.
Paso 7
Obtén el valor de la tangente.
Toca para ver más pasos...
Paso 7.1
Usa la definición de tangente para obtener el valor de .
Paso 7.2
Sustituye los valores conocidos.
Paso 7.3
La división de dos valores negativos da como resultado un valor positivo.
Paso 8
Obtén el valor de la cotangente.
Toca para ver más pasos...
Paso 8.1
Usa la definición de cotangente para obtener el valor de .
Paso 8.2
Sustituye los valores conocidos.
Paso 8.3
La división de dos valores negativos da como resultado un valor positivo.
Paso 9
Obtén el valor de la secante.
Toca para ver más pasos...
Paso 9.1
Usa la definición de secante para obtener el valor de .
Paso 9.2
Sustituye los valores conocidos.
Paso 9.3
Mueve el negativo al frente de la fracción.
Paso 10
Obtén el valor de la cosecante.
Toca para ver más pasos...
Paso 10.1
Usa la definición de cosecante para obtener el valor de .
Paso 10.2
Sustituye los valores conocidos.
Paso 10.3
Mueve el negativo al frente de la fracción.
Paso 11
Esta es la solución de cada valor trigonométrico.