Ingresa un problema...
Álgebra Ejemplos
,
Paso 1
Reescribe la ecuación como .
Paso 2
Según el teorema de valor medio, si es una función continua con valor real en el intervalo y es un número entre y , entonces hay una contenida en el intervalo de tal modo que .
Paso 3
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2
Multiplica por .
Paso 4.1.3
Multiplica por .
Paso 4.2
Suma y .
Paso 5
Paso 5.1
Simplifica cada término.
Paso 5.1.1
Eleva a la potencia de .
Paso 5.1.2
Multiplica por .
Paso 5.1.3
Multiplica por .
Paso 5.2
Suma y .
Paso 6
Paso 6.1
Reescribe la ecuación como .
Paso 6.2
Factoriza de .
Paso 6.2.1
Factoriza de .
Paso 6.2.2
Factoriza de .
Paso 6.2.3
Factoriza de .
Paso 6.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.4
Establece igual a .
Paso 6.5
Establece igual a y resuelve .
Paso 6.5.1
Establece igual a .
Paso 6.5.2
Resuelve en .
Paso 6.5.2.1
Resta de ambos lados de la ecuación.
Paso 6.5.2.2
Divide cada término en por y simplifica.
Paso 6.5.2.2.1
Divide cada término en por .
Paso 6.5.2.2.2
Simplifica el lado izquierdo.
Paso 6.5.2.2.2.1
Cancela el factor común de .
Paso 6.5.2.2.2.1.1
Cancela el factor común.
Paso 6.5.2.2.2.1.2
Divide por .
Paso 6.5.2.2.3
Simplifica el lado derecho.
Paso 6.5.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 6.6
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Según el teorema de valor medio, hay una raíz en el intervalo porque es una función continua en .
Las raíces en el intervalo se ubican en .
Paso 8