Ingresa un problema...
Álgebra Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.1.1
Para aplicar la regla de la cadena, establece como .
Paso 2.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.1.3
Reemplaza todos los casos de con .
Paso 2.2
Diferencia.
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Simplifica.
Paso 2.3.1
Reordena los factores de .
Paso 2.3.2
Reordena los factores en .
Paso 3
Paso 3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.3.3
Reemplaza todos los casos de con .
Paso 3.4
Diferencia.
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.3
Multiplica por .
Paso 3.5
Eleva a la potencia de .
Paso 3.6
Eleva a la potencia de .
Paso 3.7
Usa la regla de la potencia para combinar exponentes.
Paso 3.8
Simplifica la expresión.
Paso 3.8.1
Suma y .
Paso 3.8.2
Mueve a la izquierda de .
Paso 3.9
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.10
Multiplica por .
Paso 3.11
Simplifica.
Paso 3.11.1
Aplica la propiedad distributiva.
Paso 3.11.2
Multiplica por .
Paso 3.11.3
Reordena los términos.
Paso 3.11.4
Reordena los factores en .
Paso 4
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 5
Paso 5.1
Obtén la primera derivada.
Paso 5.1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 5.1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 5.1.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 5.1.1.3
Reemplaza todos los casos de con .
Paso 5.1.2
Diferencia.
Paso 5.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.2.3
Multiplica por .
Paso 5.1.3
Simplifica.
Paso 5.1.3.1
Reordena los factores de .
Paso 5.1.3.2
Reordena los factores en .
Paso 5.2
La primera derivada de con respecto a es .
Paso 6
Paso 6.1
Establece la primera derivada igual a .
Paso 6.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6.3
Establece igual a .
Paso 6.4
Establece igual a y resuelve .
Paso 6.4.1
Establece igual a .
Paso 6.4.2
Resuelve en .
Paso 6.4.2.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 6.4.2.2
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 6.4.2.3
No hay soluciones para
No hay solución
No hay solución
No hay solución
Paso 6.5
La solución final comprende todos los valores que hacen verdadera.
Paso 7
Paso 7.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 8
Puntos críticos para evaluar.
Paso 9
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 10
Paso 10.1
Simplifica cada término.
Paso 10.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 10.1.2
Multiplica por .
Paso 10.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 10.1.4
Multiplica por .
Paso 10.1.5
Cualquier valor elevado a es .
Paso 10.1.6
Multiplica por .
Paso 10.1.7
Elevar a cualquier potencia positiva da como resultado .
Paso 10.1.8
Multiplica por .
Paso 10.1.9
Cualquier valor elevado a es .
Paso 10.1.10
Multiplica por .
Paso 10.2
Resta de .
Paso 11
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 12
Paso 12.1
Reemplaza la variable con en la expresión.
Paso 12.2
Simplifica el resultado.
Paso 12.2.1
Elevar a cualquier potencia positiva da como resultado .
Paso 12.2.2
Multiplica por .
Paso 12.2.3
Cualquier valor elevado a es .
Paso 12.2.4
La respuesta final es .
Paso 13
Estos son los extremos locales de .
es un máximo local
Paso 14