Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Reordena los términos.
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Diferencia con la regla de la constante.
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Suma y .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Multiplica por .
Paso 4.1.3
Evalúa .
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Multiplica por .
Paso 4.1.4
Reordena los términos.
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Resta de ambos lados de la ecuación.
Paso 5.3
Divide cada término en por y simplifica.
Paso 5.3.1
Divide cada término en por .
Paso 5.3.2
Simplifica el lado izquierdo.
Paso 5.3.2.1
Cancela el factor común de .
Paso 5.3.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2
Divide por .
Paso 5.3.3
Simplifica el lado derecho.
Paso 5.3.3.1
Divide por .
Paso 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 5.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
es un máximo local porque el valor de la segunda derivada es negativo. Esto se conoce como prueba de la segunda derivada
es un máximo local
Paso 10
Paso 10.1
Reemplaza la variable con en la expresión.
Paso 10.2
Simplifica el resultado.
Paso 10.2.1
Simplifica cada término.
Paso 10.2.1.1
Reescribe como .
Paso 10.2.1.2
Eleva a la potencia de .
Paso 10.2.1.3
Reescribe como .
Paso 10.2.1.3.1
Factoriza de .
Paso 10.2.1.3.2
Reescribe como .
Paso 10.2.1.4
Retira los términos de abajo del radical.
Paso 10.2.1.5
Multiplica por .
Paso 10.2.2
Resta de .
Paso 10.2.3
La respuesta final es .
Paso 11
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 12
Multiplica por .
Paso 13
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 14
Paso 14.1
Reemplaza la variable con en la expresión.
Paso 14.2
Simplifica el resultado.
Paso 14.2.1
Simplifica cada término.
Paso 14.2.1.1
Multiplica por .
Paso 14.2.1.2
Aplica la regla del producto a .
Paso 14.2.1.3
Multiplica por sumando los exponentes.
Paso 14.2.1.3.1
Mueve .
Paso 14.2.1.3.2
Multiplica por .
Paso 14.2.1.3.2.1
Eleva a la potencia de .
Paso 14.2.1.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 14.2.1.3.3
Suma y .
Paso 14.2.1.4
Eleva a la potencia de .
Paso 14.2.1.5
Multiplica por .
Paso 14.2.1.6
Reescribe como .
Paso 14.2.1.7
Eleva a la potencia de .
Paso 14.2.1.8
Reescribe como .
Paso 14.2.1.8.1
Factoriza de .
Paso 14.2.1.8.2
Reescribe como .
Paso 14.2.1.9
Retira los términos de abajo del radical.
Paso 14.2.2
Suma y .
Paso 14.2.3
La respuesta final es .
Paso 15
Estos son los extremos locales de .
es un máximo local
es un mínimo local
Paso 16