Álgebra Ejemplos

أوجد المشتق Second f(x)=x^9e^x
Paso 1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Reordena los términos.
Paso 1.4.2
Reordena los factores en .
Paso 2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Toca para ver más pasos...
Paso 2.2.1
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4
Simplifica.
Toca para ver más pasos...
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Combina los términos.
Toca para ver más pasos...
Paso 2.4.2.1
Multiplica por .
Paso 2.4.2.2
Suma y .
Toca para ver más pasos...
Paso 2.4.2.2.1
Mueve .
Paso 2.4.2.2.2
Suma y .
Paso 2.4.3
Reordena los términos.
Paso 2.4.4
Reordena los factores en .
Paso 3
La segunda derivada de con respecto a es .