Álgebra Ejemplos

Hallar la simetría f(x)=x^4-1x^2
Paso 1
Determina si la función es impar, par o ninguna para obtener la simetría.
1. Si es impar, la función es simétrica con respecto al origen.
2. Si es par, la función es simétrica con respecto al eje y.
Paso 2
Reescribe como .
Paso 3
Obtén .
Toca para ver más pasos...
Paso 3.1
Obtén mediante la sustitución de para todos los casos de en .
Paso 3.2
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.1
Aplica la regla del producto a .
Paso 3.2.2
Eleva a la potencia de .
Paso 3.2.3
Multiplica por .
Paso 3.2.4
Aplica la regla del producto a .
Paso 3.2.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.2.5.1
Mueve .
Paso 3.2.5.2
Multiplica por .
Toca para ver más pasos...
Paso 3.2.5.2.1
Eleva a la potencia de .
Paso 3.2.5.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.5.3
Suma y .
Paso 3.2.6
Eleva a la potencia de .
Paso 4
Una función es par si .
Toca para ver más pasos...
Paso 4.1
Comprueba si .
Paso 4.2
Como , la función es par.
La función es par.
La función es par.
Paso 5
Como la función no es impar, no es simétrica con respecto al origen.
No hay simetría de origen
Paso 6
Como la función es par, es simétrica con respecto al eje y.
simetría del eje y
Paso 7