Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Reescribe como .
Paso 1.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3.3
Reemplaza todos los casos de con .
Paso 1.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.5
Multiplica los exponentes en .
Paso 1.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 1.2.5.2
Multiplica por .
Paso 1.2.6
Multiplica por .
Paso 1.2.7
Multiplica por sumando los exponentes.
Paso 1.2.7.1
Mueve .
Paso 1.2.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.2.7.3
Resta de .
Paso 1.2.8
Combina y .
Paso 1.2.9
Multiplica por .
Paso 1.2.10
Combina y .
Paso 1.2.11
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.2.12
Cancela el factor común de y .
Paso 1.2.12.1
Factoriza de .
Paso 1.2.12.2
Cancela los factores comunes.
Paso 1.2.12.2.1
Factoriza de .
Paso 1.2.12.2.2
Cancela el factor común.
Paso 1.2.12.2.3
Reescribe la expresión.
Paso 1.2.13
Mueve el negativo al frente de la fracción.
Paso 1.3
Evalúa .
Paso 1.3.1
Usa para reescribir como .
Paso 1.3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.4
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.3.5
Combina y .
Paso 1.3.6
Combina los numeradores sobre el denominador común.
Paso 1.3.7
Simplifica el numerador.
Paso 1.3.7.1
Multiplica por .
Paso 1.3.7.2
Resta de .
Paso 1.3.8
Mueve el negativo al frente de la fracción.
Paso 1.3.9
Combina y .
Paso 1.3.10
Combina y .
Paso 1.3.11
Mueve al denominador mediante la regla del exponente negativo .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3.3
Reemplaza todos los casos de con .
Paso 2.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5
Multiplica los exponentes en .
Paso 2.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.5.2
Multiplica por .
Paso 2.2.6
Multiplica por .
Paso 2.2.7
Multiplica por sumando los exponentes.
Paso 2.2.7.1
Mueve .
Paso 2.2.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.7.3
Resta de .
Paso 2.2.8
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Reescribe como .
Paso 2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3.3
Reemplaza todos los casos de con .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.5
Multiplica los exponentes en .
Paso 2.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.5.2
Multiplica .
Paso 2.3.5.2.1
Combina y .
Paso 2.3.5.2.2
Multiplica por .
Paso 2.3.5.3
Mueve el negativo al frente de la fracción.
Paso 2.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3.7
Combina y .
Paso 2.3.8
Combina los numeradores sobre el denominador común.
Paso 2.3.9
Simplifica el numerador.
Paso 2.3.9.1
Multiplica por .
Paso 2.3.9.2
Resta de .
Paso 2.3.10
Mueve el negativo al frente de la fracción.
Paso 2.3.11
Combina y .
Paso 2.3.12
Combina y .
Paso 2.3.13
Multiplica por sumando los exponentes.
Paso 2.3.13.1
Mueve .
Paso 2.3.13.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.13.3
Combina los numeradores sobre el denominador común.
Paso 2.3.13.4
Resta de .
Paso 2.3.13.5
Mueve el negativo al frente de la fracción.
Paso 2.3.14
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.3.15
Multiplica por .
Paso 2.3.16
Multiplica por .
Paso 2.3.17
Multiplica por .
Paso 2.4
Simplifica.
Paso 2.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 2.4.2
Combina y .
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Reescribe como .
Paso 3.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3.3
Reemplaza todos los casos de con .
Paso 3.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.5
Multiplica los exponentes en .
Paso 3.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.2.5.2
Multiplica por .
Paso 3.2.6
Multiplica por .
Paso 3.2.7
Multiplica por sumando los exponentes.
Paso 3.2.7.1
Mueve .
Paso 3.2.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.7.3
Resta de .
Paso 3.2.8
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Reescribe como .
Paso 3.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3.3
Reemplaza todos los casos de con .
Paso 3.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.5
Multiplica los exponentes en .
Paso 3.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.5.2
Multiplica .
Paso 3.3.5.2.1
Combina y .
Paso 3.3.5.2.2
Multiplica por .
Paso 3.3.5.3
Mueve el negativo al frente de la fracción.
Paso 3.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.3.7
Combina y .
Paso 3.3.8
Combina los numeradores sobre el denominador común.
Paso 3.3.9
Simplifica el numerador.
Paso 3.3.9.1
Multiplica por .
Paso 3.3.9.2
Resta de .
Paso 3.3.10
Combina y .
Paso 3.3.11
Combina y .
Paso 3.3.12
Multiplica por sumando los exponentes.
Paso 3.3.12.1
Mueve .
Paso 3.3.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.3.12.3
Combina los numeradores sobre el denominador común.
Paso 3.3.12.4
Suma y .
Paso 3.3.12.5
Mueve el negativo al frente de la fracción.
Paso 3.3.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.3.14
Multiplica por .
Paso 3.3.15
Multiplica por .
Paso 3.3.16
Multiplica por .
Paso 3.3.17
Multiplica por .
Paso 3.3.18
Multiplica por .
Paso 3.4
Simplifica.
Paso 3.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 3.4.2
Combina los términos.
Paso 3.4.2.1
Combina y .
Paso 3.4.2.2
Mueve el negativo al frente de la fracción.
Paso 4
Paso 4.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.2
Evalúa .
Paso 4.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.2.2
Reescribe como .
Paso 4.2.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.2.3.1
Para aplicar la regla de la cadena, establece como .
Paso 4.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.3.3
Reemplaza todos los casos de con .
Paso 4.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.2.5
Multiplica los exponentes en .
Paso 4.2.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.5.2
Multiplica por .
Paso 4.2.6
Multiplica por .
Paso 4.2.7
Multiplica por sumando los exponentes.
Paso 4.2.7.1
Mueve .
Paso 4.2.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.2.7.3
Resta de .
Paso 4.2.8
Multiplica por .
Paso 4.3
Evalúa .
Paso 4.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.2
Reescribe como .
Paso 4.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 4.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 4.3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.3.3
Reemplaza todos los casos de con .
Paso 4.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.5
Multiplica los exponentes en .
Paso 4.3.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.3.5.2
Multiplica .
Paso 4.3.5.2.1
Combina y .
Paso 4.3.5.2.2
Multiplica por .
Paso 4.3.5.3
Mueve el negativo al frente de la fracción.
Paso 4.3.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 4.3.7
Combina y .
Paso 4.3.8
Combina los numeradores sobre el denominador común.
Paso 4.3.9
Simplifica el numerador.
Paso 4.3.9.1
Multiplica por .
Paso 4.3.9.2
Resta de .
Paso 4.3.10
Combina y .
Paso 4.3.11
Combina y .
Paso 4.3.12
Multiplica por sumando los exponentes.
Paso 4.3.12.1
Mueve .
Paso 4.3.12.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.3.12.3
Combina los numeradores sobre el denominador común.
Paso 4.3.12.4
Suma y .
Paso 4.3.12.5
Mueve el negativo al frente de la fracción.
Paso 4.3.13
Mueve al denominador mediante la regla del exponente negativo .
Paso 4.3.14
Multiplica por .
Paso 4.3.15
Multiplica por .
Paso 4.3.16
Multiplica por .
Paso 4.4
Simplifica.
Paso 4.4.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 4.4.2
Combina y .