Álgebra Ejemplos

Expandir utilizando el triángulo de Pascal (3-2x)^6
Paso 1
El triángulo de Pascal se puede visualizar de la siguiente manera:
El triángulo puede usarse para calcular los coeficientes de la expansión de al tomar el exponente y sumar . Los coeficientes se corresponderán con la línea del triángulo. Para , de modo que los coeficientes de la expansión se corresponderán con la línea .
Paso 2
La expansión sigue la regla . Los valores de los coeficientes, desde el triángulo, son .
Paso 3
Sustituye los valores reales de , y en la expresión .
Paso 4
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1
Multiplica por .
Paso 4.2
Eleva a la potencia de .
Paso 4.3
Aplica la regla del producto a .
Paso 4.4
Cualquier valor elevado a es .
Paso 4.5
Multiplica por .
Paso 4.6
Cualquier valor elevado a es .
Paso 4.7
Multiplica por .
Paso 4.8
Eleva a la potencia de .
Paso 4.9
Multiplica por .
Paso 4.10
Simplifica.
Paso 4.11
Multiplica por .
Paso 4.12
Eleva a la potencia de .
Paso 4.13
Multiplica por .
Paso 4.14
Aplica la regla del producto a .
Paso 4.15
Eleva a la potencia de .
Paso 4.16
Multiplica por .
Paso 4.17
Eleva a la potencia de .
Paso 4.18
Multiplica por .
Paso 4.19
Aplica la regla del producto a .
Paso 4.20
Eleva a la potencia de .
Paso 4.21
Multiplica por .
Paso 4.22
Eleva a la potencia de .
Paso 4.23
Multiplica por .
Paso 4.24
Aplica la regla del producto a .
Paso 4.25
Eleva a la potencia de .
Paso 4.26
Multiplica por .
Paso 4.27
Evalúa el exponente.
Paso 4.28
Multiplica por .
Paso 4.29
Aplica la regla del producto a .
Paso 4.30
Eleva a la potencia de .
Paso 4.31
Multiplica por .
Paso 4.32
Multiplica por .
Paso 4.33
Cualquier valor elevado a es .
Paso 4.34
Multiplica por .
Paso 4.35
Aplica la regla del producto a .
Paso 4.36
Eleva a la potencia de .