Ingresa un problema...
Álgebra Ejemplos
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Paso 2.1
Usa las propiedades de los logaritmos del producto, .
Paso 2.2
Simplifica cada término.
Paso 2.2.1
Aplica la propiedad distributiva.
Paso 2.2.2
Multiplica por .
Paso 2.2.3
Mueve a la izquierda de .
Paso 3
Establece el argumento en menor o igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Paso 4.1
Convierte la desigualdad en una ecuación.
Paso 4.2
Factoriza de .
Paso 4.2.1
Factoriza de .
Paso 4.2.2
Factoriza de .
Paso 4.2.3
Factoriza de .
Paso 4.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4.4
Establece igual a .
Paso 4.5
Establece igual a y resuelve .
Paso 4.5.1
Establece igual a .
Paso 4.5.2
Resta de ambos lados de la ecuación.
Paso 4.6
La solución final comprende todos los valores que hacen verdadera.
Paso 4.7
Usa cada raíz para crear intervalos de prueba.
Paso 4.8
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Paso 4.8.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 4.8.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 4.8.1.2
Reemplaza con en la desigualdad original.
Paso 4.8.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 4.8.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 4.8.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 4.8.2.2
Reemplaza con en la desigualdad original.
Paso 4.8.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 4.8.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 4.8.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 4.8.3.2
Reemplaza con en la desigualdad original.
Paso 4.8.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 4.8.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 4.9
La solución consiste en todos los intervalos verdaderos.
Paso 5
La ecuación es indefinida cuando el denominador es igual a , el argumento de una raíz cuadrada es menor que o el argumento de un logaritmo es menor o igual que .
Paso 6